- Competing narratives in AI ethics: a defense of sociotechnical pragmatism.David S. Watson, Jakob Mökander & Luciano Floridi - forthcoming - AI and Society:1-23.details
|
|
Understanding with Toy Surrogate Models in Machine Learning.Andrés Páez - 2024 - Minds and Machines 34 (4):45.details
|
|
Reliability in Machine Learning.Thomas Grote, Konstantin Genin & Emily Sullivan - 2024 - Philosophy Compass 19 (5):e12974.details
|
|
From AI Ethics Principles to Practices: A Teleological Methodology to Apply AI Ethics Principles in The Defence Domain.Christopher Thomas, Alexander Blanchard & Mariarosaria Taddeo - 2024 - Philosophy and Technology 37 (1):1-21.details
|
|
Algorithms Don’t Have A Future: On the Relation of Judgement and Calculation.Daniel Stader - 2024 - Philosophy and Technology 37 (1):1-29.details
|
|
What we owe to decision-subjects: beyond transparency and explanation in automated decision-making.David Gray Grant, Jeff Behrends & John Basl - 2023 - Philosophical Studies 2003:1-31.details
|
|
On the Philosophy of Unsupervised Learning.David S. Watson - 2023 - Philosophy and Technology 36 (2):1-26.details
|
|
Levels of explicability for medical artificial intelligence: What do we normatively need and what can we technically reach?Frank Ursin, Felix Lindner, Timo Ropinski, Sabine Salloch & Cristian Timmermann - 2023 - Ethik in der Medizin 35 (2):173-199.details
|
|
Defining the undefinable: the black box problem in healthcare artificial intelligence.Jordan Joseph Wadden - 2022 - Journal of Medical Ethics 48 (10):764-768.details
|
|
Philosophy of science at sea: Clarifying the interpretability of machine learning.Claus Beisbart & Tim Räz - 2022 - Philosophy Compass 17 (6):e12830.details
|
|
Artificial Intelligence Ethics and Safety: practical tools for creating "good" models.Nicholas Kluge Corrêa - details
|
|
I, Volkswagen.Stephanie Collins - 2022 - Philosophical Quarterly 72 (2):283-304.details
|
|
Algorithmic bias: Senses, sources, solutions.Sina Fazelpour & David Danks - 2021 - Philosophy Compass 16 (8):e12760.details
|
|
SIDEs: Separating Idealization from Deceptive ‘Explanations’ in xAI.Emily Sullivan - forthcoming - Proceedings of the 2024 Acm Conference on Fairness, Accountability, and Transparency.details
|
|
Understanding, Idealization, and Explainable AI.Will Fleisher - 2022 - Episteme 19 (4):534-560.details
|
|
AI, Explainability and Public Reason: The Argument from the Limitations of the Human Mind.Jocelyn Maclure - 2021 - Minds and Machines 31 (3):421-438.details
|
|
(1 other version)Ethics as a service: a pragmatic operationalisation of AI ethics.Jessica Morley, Anat Elhalal, Francesca Garcia, Libby Kinsey, Jakob Mökander & Luciano Floridi - 2021 - Minds and Machines 31 (2):239–256.details
|
|
Humanistic interpretation and machine learning.Juho Pääkkönen & Petri Ylikoski - 2021 - Synthese 199:1461–1497.details
|
|
(1 other version)Experts or Authorities? The Strange Case of the Presumed Epistemic Superiority of Artificial Intelligence Systems.Andrea Ferrario, Alessandro Facchini & Alberto Termine - 2024 - Minds and Machines 34 (3):1-27.details
|
|
Conceptualizing understanding in explainable artificial intelligence (XAI): an abilities-based approach.Timo Speith, Barnaby Crook, Sara Mann, Astrid Schomäcker & Markus Langer - 2024 - Ethics and Information Technology 26 (2):1-15.details
|
|
On the Ethical and Epistemological Utility of Explicable AI in Medicine.Christian Herzog - 2022 - Philosophy and Technology 35 (2):1-31.details
|
|
Understanding Deep Learning with Statistical Relevance.Tim Räz - 2022 - Philosophy of Science 89 (1):20-41.details
|
|
People Prefer Moral Discretion to Algorithms: Algorithm Aversion Beyond Intransparency.Johanna Jauernig, Matthias Uhl & Gari Walkowitz - 2022 - Philosophy and Technology 35 (1):1-25.details
|
|
Ética e Segurança da Inteligência Artificial: ferramentas práticas para se criar "bons" modelos.Nicholas Kluge Corrêa - manuscriptdetails
|
|
(1 other version)Ethics as a service: a pragmatic operationalisation of AI ethics.Jessica Morley, Anat Elhalal, Francesca Garcia, Libby Kinsey, Jakob Mökander & Luciano Floridi - manuscriptdetails
|
|
ML interpretability: Simple isn't easy.Tim Räz - 2024 - Studies in History and Philosophy of Science Part A 103 (C):159-167.details
|
|
Accuracy and Interpretability: Struggling with the Epistemic Foundations of Machine Learning-Generated Medical Information and Their Practical Implications for the Doctor-Patient Relationship.Florian Funer - 2022 - Philosophy and Technology 35 (1):1-20.details
|
|
What is Interpretability?Adrian Erasmus, Tyler D. P. Brunet & Eyal Fisher - 2021 - Philosophy and Technology 34:833–862.details
|
|
Explanatory pragmatism: a context-sensitive framework for explainable medical AI.Diana Robinson & Rune Nyrup - 2022 - Ethics and Information Technology 24 (1).details
|
|
A Means-End Account of Explainable Artificial Intelligence.Oliver Buchholz - 2023 - Synthese 202 (33):1-23.details
|
|
(1 other version)The epistemological foundations of data science: a critical review.Luciano Floridi, Mariarosaria Taddeo, Vincent Wang, David Watson & Jules Desai - 2022 - Synthese 200 (6):1-27.details
|
|
Conceptual challenges for interpretable machine learning.David S. Watson - 2022 - Synthese 200 (2):1-33.details
|
|
The Deception of Certainty: how Non-Interpretable Machine Learning Outcomes Challenge the Epistemic Authority of Physicians. A deliberative-relational Approach.Florian Funer - 2022 - Medicine, Health Care and Philosophy 25 (2):167-178.details
|
|
Sources of Understanding in Supervised Machine Learning Models.Paulo Pirozelli - 2022 - Philosophy and Technology 35 (2):1-19.details
|
|
Allure of Simplicity.Thomas Grote - 2023 - Philosophy of Medicine 4 (1).details
|
|