Switch to: References

Add citations

You must login to add citations.
  1. (1 other version)Data science and molecular biology: prediction and mechanistic explanation.Ezequiel López-Rubio & Emanuele Ratti - 2021 - Synthese 198 (4):3131-3156.
    In the last few years, biologists and computer scientists have claimed that the introduction of data science techniques in molecular biology has changed the characteristics and the aims of typical outputs (i.e. models) of such a discipline. In this paper we will critically examine this claim. First, we identify the received view on models and their aims in molecular biology. Models in molecular biology are mechanistic and explanatory. Next, we identify the scope and aims of data science (machine learning in (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Complexity and integration. A philosophical analysis of how cancer complexity can be faced in the era of precision medicine.Giovanni Boniolo & Raffaella Campaner - 2019 - European Journal for Philosophy of Science 9 (3):1-25.
    Complexity and integration are longstanding widely debated issues in philosophy of science and recent contributions have largely focused on biology and biomedicine. This paper specifically considers some methodological novelties in cancer research, motivated by various features of tumours as complex diseases, and shows how they encourage some rethinking of philosophical discourses on those topics. In particular, we discuss the integrative-cluster approach, and analyse its potential in the epistemology of cancer. We suggest that, far from being the solution to tame cancer (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)Data science and molecular biology: prediction and mechanistic explanation.Ezequiel López-Rubio & Emanuele Ratti - 2019 - Synthese (4):1-26.
    In the last few years, biologists and computer scientists have claimed that the introduction of data science techniques in molecular biology has changed the characteristics and the aims of typical outputs (i.e. models) of such a discipline. In this paper we will critically examine this claim. First, we identify the received view on models and their aims in molecular biology. Models in molecular biology are mechanistic and explanatory. Next, we identify the scope and aims of data science (machine learning in (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations