Switch to: References

Add citations

You must login to add citations.
  1. Entropy - A Guide for the Perplexed.Roman Frigg & Charlotte Werndl - 2011 - In Claus Beisbart & Stephan Hartmann (eds.), Probabilities in Physics. Oxford, GB: Oxford University Press. pp. 115-142.
    Entropy is ubiquitous in physics, and it plays important roles in numerous other disciplines ranging from logic and statistics to biology and economics. However, a closer look reveals a complicated picture: entropy is defined differently in different contexts, and even within the same domain different notions of entropy are at work. Some of these are defined in terms of probabilities, others are not. The aim of this chapter is to arrive at an understanding of some of the most important notions (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Theories of probability.Colin Howson - 1995 - British Journal for the Philosophy of Science 46 (1):1-32.
    My title is intended to recall Terence Fine's excellent survey, Theories of Probability [1973]. I shall consider some developments that have occurred in the intervening years, and try to place some of the theories he discussed in what is now a slightly longer perspective. Completeness is not something one can reasonably hope to achieve in a journal article, and any selection is bound to reflect a view of what is salient. In a subject as prone to dispute as this, there (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • On Falsifiable Statistical Hypotheses.Konstantin Genin - 2022 - Philosophies 7 (2):40.
    Popper argued that a statistical falsification required a prior methodological decision to regard sufficiently improbable events as ruled out. That suggestion has generated a number of fruitful approaches, but also a number of apparent paradoxes and ultimately, no clear consensus. It is still commonly claimed that, since random samples are logically consistent with all the statistical hypotheses on the table, falsification simply does not apply in realistic statistical settings. We claim that the situation is considerably improved if we ask a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Die Falsifikation Statistischer Hypothesen/The falsification of statistical hypotheses.Max Albert - 1992 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 23 (1):1-32.
    It is widely held that falsification of statistical hypotheses is impossible. This view is supported by an analysis of the most important theories of statistical testing: these theories are not compatible with falsificationism. On the other hand, falsificationism yields a basically viable solution to the problems of explanation, prediction and theory testing in a deterministic context. The present paper shows how to introduce the falsificationist solution into the realm of statistics. This is done mainly by applying the concept of empirical (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Discussions notes: Ad hocness and the appraisal of theories.M. Redhead - 1978 - British Journal for the Philosophy of Science 29 (4):355-361.
    Download  
     
    Export citation  
     
    Bookmark  
  • Resolving Neyman's paradox.Max Albert - 2002 - British Journal for the Philosophy of Science 53 (1):69-76.
    According to Fisher, a hypothesis specifying a density function for X is falsified (at the level of significance ) if the realization of X is in the size- region of lowest densities. However, non-linear transformations of X can map low-density into high-density regions. Apparently, then, falsifications can always be turned into corroborations (and vice versa) by looking at suitable transformations of X (Neyman's Paradox). The present paper shows that, contrary to the view taken in the literature, this provides no argument (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations