Switch to: References

Add citations

You must login to add citations.
  1. Recursive linear orders with recursive successivities.Michael Moses - 1984 - Annals of Pure and Applied Logic 27 (3):253-264.
    A successivity in a linear order is a pair of elements with no other elements between them. A recursive linear order with recursive successivities U is recursively categorical if every recursive linear order with recursive successivities isomorphic to U is in fact recursively isomorphic to U . We characterize those recursive linear orders with recursive successivities that are recursively categorical as precisely those with order type k 1 + g 1 + k 2 + g 2 +…+ g n -1 (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Computable Heyting Algebras with Distinguished Atoms and Coatoms.Nikolay Bazhenov - 2023 - Journal of Logic, Language and Information 32 (1):3-18.
    The paper studies Heyting algebras within the framework of computable structure theory. We prove that the class _K_ containing all Heyting algebras with distinguished atoms and coatoms is complete in the sense of the work of Hirschfeldt et al. (Ann Pure Appl Logic 115(1-3):71-113, 2002). This shows that the class _K_ is rich from the computability-theoretic point of view: for example, every possible degree spectrum can be realized by a countable structure from _K_. In addition, there is no simple syntactic (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Every recursive boolean algebra is isomorphic to one with incomplete atoms.Rod Downey - 1993 - Annals of Pure and Applied Logic 60 (3):193-206.
    The theorem of the title is proven, solving an old question of Remmel. The method of proof uses an algebraic technique of Remmel-Vaught combined with a complex tree of strategies argument where the true path is needed to figure out the final isomorphism.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Recursive unary algebras and trees.Bakhadyr Khoussainov - 1994 - Annals of Pure and Applied Logic 67 (1-3):213-268.
    A unary algebra is an algebraic system A = , where ƒ 0 ,…,ƒ n are unary operations on A and n ∈ ω. In the paper we develop the theory of effective unary algebras. We investigate well-known questions of constructive model theory with respect to the class of unary algebras. In the paper we construct unary algebras with a finite number of recursive isomorphism types. We give the notions of program, uniform, and algebraic dimensions of models, and then we (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Punctually presented structures II: comparing presentations.Marina Dorzhieva, Rodney Downey, Ellen Hammatt, Alexander G. Melnikov & Keng Meng Ng - forthcoming - Archive for Mathematical Logic:1-26.
    We investigate the problem of punctual (fully primitive recursive) presentability of algebraic structures up to primitive recursive and computable isomorphism. We show that for mono-unary structures and undirected graphs, if a structure is not punctually categorical then it has infinitely many punctually non-isomorphic punctual presentations. We also show that the punctual degrees of any computably almost rigid structure as well as the order ($$\mathbb {Z},<$$ Z, < ) are dense. Finally we characterise the Boolean algebras which have a punctually 1-decidable (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Decidable Boolean algebras of low level.S. S. Goncharov - 1998 - Annals of Pure and Applied Logic 94 (1-3):75-95.
    We will study the question about decidability for Boolean algebras with first elementary characteristic one. The main problem is sufficient conditions for decidability of Boolean algebras with recursive representation for extended signature by definable predicates. We will use the base definitions on recursive and constructive models from [2, 4–6, 10, 11] but on Boolean algebras from [1, 8].
    Download  
     
    Export citation  
     
    Bookmark  
  • Recursively rigid Boolean algebras.Jeffrey B. Remmel - 1987 - Annals of Pure and Applied Logic 36:39-52.
    Download  
     
    Export citation  
     
    Bookmark   1 citation