Switch to: References

Add citations

You must login to add citations.
  1. Computability and uncountable linear orders II: Degree spectra.Noam Greenberg, Asher M. Kach, Steffen Lempp & Daniel D. Turetsky - 2015 - Journal of Symbolic Logic 80 (1):145-178.
    Download  
     
    Export citation  
     
    Bookmark  
  • Every recursive linear ordering has a copy in dtime-space (n, log(n)).Serge Grigorieff - 1990 - Journal of Symbolic Logic 55 (1):260-276.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Recursive categoricity and recursive stability.John N. Crossley, Alfred B. Manaster & Michael F. Moses - 1986 - Annals of Pure and Applied Logic 31:191-204.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Decidable discrete linear orders.M. Moses - 1988 - Journal of Symbolic Logic 53 (2):531-539.
    Three classes of decidable discrete linear orders with varying degrees of effectiveness are investigated. We consider how a classical order type may lie in relation to these three classes, and we characterize by their order types elements of these classes that have effective nontrivial self-embeddings.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Computability-theoretic complexity of countable structures.Valentina S. Harizanov - 2002 - Bulletin of Symbolic Logic 8 (4):457-477.
    Computable model theory, also called effective or recursive model theory, studies algorithmic properties of mathematical structures, their relations, and isomorphisms. These properties can be described syntactically or semantically. One of the major tasks of computable model theory is to obtain, whenever possible, computability-theoretic versions of various classical model-theoretic notions and results. For example, in the 1950's, Fröhlich and Shepherdson realized that the concept of a computable function can make van der Waerden's intuitive notion of an explicit field precise. This led (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Relations Intrinsically Recursive in Linear Orders.Michael Moses - 1986 - Mathematical Logic Quarterly 32 (25-30):467-472.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • (1 other version)< i> Δ_< sub> 2< sup> 0-categoricity in Boolean algebras and linear orderings.Charles F. D. McCoy - 2003 - Annals of Pure and Applied Logic 119 (1-3):85-120.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • (1 other version)Δ20-categoricity in Boolean algebras and linear orderings.Charles F. D. McCoy - 2003 - Annals of Pure and Applied Logic 119 (1-3):85-120.
    We characterize Δ20-categoricity in Boolean algebras and linear orderings under some extra effectiveness conditions. We begin with a study of the relativized notion in these structures.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • On Cohesive Powers of Linear Orders.Rumen Dimitrov, Valentina Harizanov, Andrey Morozov, Paul Shafer, Alexandra A. Soskova & Stefan V. Vatev - 2023 - Journal of Symbolic Logic 88 (3):947-1004.
    Cohesive powersof computable structures are effective analogs of ultrapowers, where cohesive sets play the role of ultrafilters. Let$\omega $,$\zeta $, and$\eta $denote the respective order-types of the natural numbers, the integers, and the rationals when thought of as linear orders. We investigate the cohesive powers of computable linear orders, with special emphasis on computable copies of$\omega $. If$\mathcal {L}$is a computable copy of$\omega $that is computably isomorphic to the usual presentation of$\omega $, then every cohesive power of$\mathcal {L}$has order-type$\omega + (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation