- Condensable models of set theory.Ali Enayat - 2022 - Archive for Mathematical Logic 61 (3):299-315.details
|
|
Hanf number for Scott sentences of computable structures.S. S. Goncharov, J. F. Knight & I. Souldatos - 2018 - Archive for Mathematical Logic 57 (7-8):889-907.details
|
|
Classification from a computable viewpoint.Wesley Calvert & Julia F. Knight - 2006 - Bulletin of Symbolic Logic 12 (2):191-218.details
|
|
Π₁¹ Relations and Paths through ᵊ.Sergey S. Goncharov, Valentina S. Harizanov, Julia F. Knight & Richard A. Shore - 2004 - Journal of Symbolic Logic 69 (2):585 - 611.details
|
|
Game sentences, recursive saturation and definability.Victor Harnik - 1980 - Journal of Symbolic Logic 45 (1):35-46.details
|
|
(1 other version)An introduction to recursively saturated and resplendent models.Jon Barwise & John Schlipf - 1976 - Journal of Symbolic Logic 41 (2):531-536.details
|
|
Saturated structures, unions of chains, and preservation theorems.Alan Adamson - 1980 - Annals of Mathematical Logic 19 (1):67-96.details
|
|
Applications of Fodor's lemma to Vaught's conjecture.Mark Howard - 1989 - Annals of Pure and Applied Logic 42 (1):1-19.details
|
|
Bootstrapping, part I.Sedki Boughattas & J. -P. Ressayre - 2010 - Annals of Pure and Applied Logic 161 (4):511-533.details
|
|
Automorphisms of Countable Short Recursively Saturated Models of PA.Erez Shochat - 2008 - Notre Dame Journal of Formal Logic 49 (4):345-360.details
|
|
Recursively saturated nonstandard models of arithmetic.C. Smoryński - 1981 - Journal of Symbolic Logic 46 (2):259-286.details
|
|
Ω1-like recursively saturated models of Presburger's arithmetic.Victor Harnik - 1986 - Journal of Symbolic Logic 51 (2):421-429.details
|
|
Transplendent Models: Expansions Omitting a Type.Fredrik Engström & Richard W. Kaye - 2012 - Notre Dame Journal of Formal Logic 53 (3):413-428.details
|
|
Π 1 1 relations and paths through.Sergey Goncharov, Valentina Harizanov, Julia Knight & Richard Shore - 2004 - Journal of Symbolic Logic 69 (2):585-611.details
|
|
Barwise: Infinitary logic and admissible sets.H. Jerome Keisler & Julia F. Knight - 2004 - Bulletin of Symbolic Logic 10 (1):4-36.details
|
|
Refinements of Vaught's normal from theorem.Victor Harnik - 1979 - Journal of Symbolic Logic 44 (3):289-306.details
|
|
(1 other version)A Spector-Gandy theorem for cPC d () classes.Shaughan Lavine - 1992 - Journal of Symbolic Logic 57 (2):478-500.details
|
|
Admissible sets and the saturation of structures.Alan Adamson - 1978 - Annals of Mathematical Logic 14 (2):111.details
|
|
Toward model theory through recursive saturation.John Stewart Schlipf - 1978 - Journal of Symbolic Logic 43 (2):183-206.details
|
|
Bounded Scott Set Saturation.Alex M. McAllister - 2002 - Mathematical Logic Quarterly 48 (2):245-259.details
|
|
An admissible generalization of a theorem on countable ¹ 1 sets of reals with applications.M. Makkai - 1977 - Annals of Mathematical Logic 11 (1):1.details
|
|
An example concerning Scott heights.M. Makkai - 1981 - Journal of Symbolic Logic 46 (2):301-318.details
|
|
Generalized reduction theorems for model-theoretic analogs of the class of coanalytic sets.Shaughan Lavine - 1993 - Journal of Symbolic Logic 58 (1):81-98.details
|
|
Algebraic independence.Julia F. Knight - 1981 - Journal of Symbolic Logic 46 (2):377-384.details
|
|
Countable models of omega 1-categorical theories in admissible languages.Henry A. Kierstead - 1980 - Annals of Mathematical Logic 19 (1/2):127.details
|
|
The Vaught Conjecture: Do Uncountable Models Count?John T. Baldwin - 2007 - Notre Dame Journal of Formal Logic 48 (1):79-92.details
|
|
An example related to Gregory’s Theorem.J. Johnson, J. F. Knight, V. Ocasio & S. VanDenDriessche - 2013 - Archive for Mathematical Logic 52 (3-4):419-434.details
|
|
(1 other version)Automorphisms of Countable Recursively Saturated Models of PA: A Survey.Henryk Kotlarski - 1995 - Notre Dame Journal of Formal Logic 36 (4):505-518.details
|
|
Classes of Ulm type and coding rank-homogeneous trees in other structures.E. Fokina, J. F. Knight, A. Melnikov, S. M. Quinn & C. Safranski - 2011 - Journal of Symbolic Logic 76 (3):846 - 869.details
|
|
Unifying the model theory of first-order and second-order arithmetic via WKL 0 ⁎.Ali Enayat & Tin Lok Wong - 2017 - Annals of Pure and Applied Logic 168 (6):1247-1283.details
|
|
(2 other versions)Resplendent models and $${\Sigma_1^1}$$ -definability with an oracle.Andrey Bovykin - 2008 - Archive for Mathematical Logic 47 (6):607-623.details
|
|
(2 other versions)Resplendent models and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Sigma_1^1}$$\end{document} -definability with an oracle. [REVIEW]Andrey Bovykin - 2008 - Archive for Mathematical Logic 47 (6):607-623.details
|
|
(2 other versions)Resplendent models and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Sigma_1^1}$$\end{document} -definability with an oracle. [REVIEW]Andrey Bovykin - 2008 - Archive for Mathematical Logic 47 (6):607-623.details
|
|