Switch to: References

Add citations

You must login to add citations.
  1. Scientific Understanding: What It Is and How It Is Achieved.Anna Elisabeth Höhl - 2024 - transcript Verlag.
    Understanding is an ability manifested by grasping relations of a phenomenon and articulating new explanations. Hence, scientific understanding is inextricably intertwined with and not possible without explanation, and understanding is not a type of propositional knowledge. Anna Elisabeth Höhl provides a novel philosophical account of scientific understanding by developing and defending necessary and sufficient conditions for the understanding that scientists achieve of the phenomena they are researching. This account of scientific understanding is based on and supported by a detailed investigation (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Evaluating evidential pluralism in epidemiology: mechanistic evidence in exposome research.Stefano Canali - 2019 - History and Philosophy of the Life Sciences 41 (1):4.
    In current philosophical discussions on evidence in the medical sciences, epidemiology has been used to exemplify a specific version of evidential pluralism. According to this view, known as the Russo–Williamson Thesis, evidence of both difference-making and mechanisms is produced to make causal claims in the health sciences. In this paper, I present an analysis of data and evidence in epidemiological practice, with a special focus on research on the exposome, and I cast doubt on the extent to which evidential pluralism (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Understanding does not depend on (causal) explanation.Philippe Verreault-Julien - 2019 - European Journal for Philosophy of Science 9 (2):18.
    One can find in the literature two sets of views concerning the relationship between understanding and explanation: that one understands only if 1) one has knowledge of causes and 2) that knowledge is provided by an explanation. Taken together, these tenets characterize what I call the narrow knowledge account of understanding. While the first tenet has recently come under severe attack, the second has been more resistant to change. I argue that we have good reasons to reject it on the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • How-Possibly Explanation in Biology: Lessons from Wilhelm His’s ‘Simple Experiments’ Models.Christopher Pearson - 2018 - Philosophy, Theory, and Practice in Biology 10 (4).
    A common view of how-possibly explanations in biology treats them as explanatorily incomplete. In addition to this interpretation of how-possibly explanation, I argue that there is another interpretation, one which features what I term “explanatory strategies.” This strategy-centered interpretation of how-possibly explanation centers on there being a different explanatory context within which how-possibly explanations are offered. I contend that, in conditions where this strategy context is recognized, how-possibly explanations can be understood as complete explanations. I defend this alternative interpretation by (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Why We Cannot Learn from Minimal Models.Roberto Fumagalli - 2016 - Erkenntnis 81 (3):433-455.
    Philosophers of science have developed several accounts of how consideration of scientific models can prompt learning about real-world targets. In recent years, various authors advocated the thesis that consideration of so-called minimal models can prompt learning about such targets. In this paper, I draw on the philosophical literature on scientific modelling and on widely cited illustrations from economics and biology to argue that this thesis fails to withstand scrutiny. More specifically, I criticize leading proponents of such thesis for failing to (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • International Handbook of Research in History, Philosophy and Science Teaching.Michael R. Matthews (ed.) - 2014 - Springer.
    This inaugural handbook documents the distinctive research field that utilizes history and philosophy in investigation of theoretical, curricular and pedagogical issues in the teaching of science and mathematics. It is contributed to by 130 researchers from 30 countries; it provides a logically structured, fully referenced guide to the ways in which science and mathematics education is, informed by the history and philosophy of these disciplines, as well as by the philosophy of education more generally. The first handbook to cover the (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • How could models possibly provide how-possibly explanations?Philippe Verreault-Julien - 2019 - Studies in History and Philosophy of Science Part A 73:1-12.
    One puzzle concerning highly idealized models is whether they explain. Some suggest they provide so-called ‘how-possibly explanations’. However, this raises an important question about the nature of how-possibly explanations, namely what distinguishes them from ‘normal’, or how-actually, explanations? I provide an account of how-possibly explanations that clarifies their nature in the context of solving the puzzle of model-based explanation. I argue that the modal notions of actuality and possibility provide the relevant dividing lines between how-possibly and how-actually explanations. Whereas how-possibly (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • Synthetic biology and the search for alternative genetic systems: Taking how-possibly models seriously.Koskinen Rami - 2017 - European Journal for Philosophy of Science 7 (3):493-506.
    Many scientific models in biology are how-possibly models. These models depict things as they could be, but do not necessarily capture actual states of affairs in the biological world. In contemporary philosophy of science, it is customary to treat how-possibly models as second-rate theoretical tools. Although possibly important in the early stages of theorizing, they do not constitute the main aim of modelling, namely, to discover the actual mechanism responsible for the phenomenon under study. In the paper it is argued (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Michael Ruse, The Gaïa hypothesis: science on a pagan planet: University of Chicago Press, Chicago, 2013, 272 pp, $26.00. [REVIEW]Sébastien Dutreuil - 2014 - History and Philosophy of the Life Sciences 36 (1):149-151.
    This article on the epistemology of computational models stems from an analysis of the Gaïa hypothesis. It begins with James Kirchner’s criticisms of the central computational model of GH: Daisyworld. Among other things, the model has been criticized for being too abstract, describing fictional entities and trying to answer counterfactual questions. For these reasons the model has been considered not testable and therefore not legitimate in science, and in any case not very interesting since it explores non actual issues. This (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Non-causal understanding with economic models: the case of general equilibrium.Philippe Verreault-Julien - 2017 - Journal of Economic Methodology 24 (3):297-317.
    How can we use models to understand real phenomena if models misrepresent the very phenomena we seek to understand? Some accounts suggest that models may afford understanding by providing causal knowledge about phenomena via how-possibly explanations. However, general equilibrium models, for example, pose a challenge to this solution since their contribution appears to be purely mathematical results. Despite this, practitioners widely acknowledge that it improves our understanding of the world. I argue that the Arrow–Debreu model provides a mathematical how-possibly explanation (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • (1 other version)Hypothetical Pattern Idealization and Explanatory Models.Yasha Rohwer & Collin Rice - 2013 - Philosophy of Science 80 (3):334-355.
    Highly idealized models, such as the Hawk-Dove game, are pervasive in biological theorizing. We argue that the process and motivation that leads to the introduction of various idealizations into these models is not adequately captured by Michael Weisberg’s taxonomy of three kinds of idealization. Consequently, a fourth kind of idealization is required, which we call hypothetical pattern idealization. This kind of idealization is used to construct models that aim to be explanatory but do not aim to be explanations.
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Exploratory modeling and indeterminacy in the search for life.Franklin R. Jacoby - 2022 - European Journal for Philosophy of Science 12 (2):1-20.
    The aim of this article is to use a model from the origin of life studies to provide some depth and detail to our understanding of exploratory models by suggesting that some of these models should be understood as indeterminate. Models that are indeterminate are a type of exploratory model and therefore have extensive potential and can prompt new lines of research. They are distinctive in that, given the current state of scientific understanding, we cannot specify how and where the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The proper role of history in evolutionary explanations.Thomas A. C. Reydon - 2023 - Noûs 57 (1):162-187.
    Evolutionary explanations are not only common in the biological sciences, but also widespread outside biology. But an account of how evolutionary explanations perform their explanatory work is still lacking. This paper develops such an account. I argue that available accounts of explanations in evolutionary science miss important parts of the role of history in evolutionary explanations. I argue that the historical part of evolutionary science should be taken as having genuine explanatory force, and that it provides how‐possibly explanations sensu Dray. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Possibilist Explanation: Explaining How-Possibly Through Laws.Gustavo A. Castañon - 2019 - Erkenntnis 86 (4):835-852.
    Abstract‘Possibilist Explanation’ is a promising account of scientific explanation which avoids the familiar problems of “how-possibly explanations”. It explains an event by showing how-actually it was epistemically possible, instead of why it was epistemically necessary. Its explanandum is the epistemic possibility of an actual event previously considered epistemically impossible. To define PE, two new concepts are introduced: ‘permissive condition’ and ‘possibilist law’. A permissive condition for an event is something that does not entail the event itself, but a necessary condition (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • What good are abstract and what-if models? Lessons from the Gaïa hypothesis.Sébastien Dutreuil - 2014 - History and Philosophy of the Life Sciences 36 (1):16-41.
    This article on the epistemology of computational models stems from an analysis of the Gaia hypothesis (GH). It begins with James Kirchner’s criticisms of the central computational model of GH: Daisyworld. Among other things, the model has been criticized for being too abstract, describing fictional entities (fictive daisies on an imaginary planet) and trying to answer counterfactual (what-if) questions (how would a planet look like if life had no influence on it?). For these reasons the model has been considered not (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Possibilist Explanation: Explaining How-Possibly Through Laws.Gustavo A. Castañon - 2021 - Erkenntnis:835-852.
    ‘Possibilist Explanation’ is a promising account of scientific explanation which avoids the familiar problems of “how-possibly explanations”. It explains an event by showing how-actually it was epistemically possible, instead of why it was epistemically necessary. Its explanandum is the epistemic possibility of an actual event previously considered epistemically impossible. To define PE, two new concepts are introduced: ‘permissive condition’ and ‘possibilist law’. A permissive condition for an event is something that does not entail the event itself, but a necessary condition (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • What Is the Epistemic Function of Highly Idealized Agent-Based Models of Scientific Inquiry?Daniel Frey & Dunja Šešelja - 2018 - Philosophy of the Social Sciences 48 (4):407-433.
    In this paper we examine the epistemic value of highly idealized agent-based models of social aspects of scientific inquiry. On the one hand, we argue that taking the results of such simulations as informative of actual scientific inquiry is unwarranted, at least for the class of models proposed in recent literature. Moreover, we argue that a weaker approach, which takes these models as providing only “how-possibly” explanations, does not help to improve their epistemic value. On the other hand, we suggest (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations