Switch to: References

Add citations

You must login to add citations.
  1. The minimal cofinality of an ultrapower of ω and the cofinality of the symmetric group can be larger than b+.Heike Mildenberger & Saharon Shelah - 2011 - Journal of Symbolic Logic 76 (4):1322-1340.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Controlling cardinal characteristics without adding reals.Martin Goldstern, Jakob Kellner, Diego A. Mejía & Saharon Shelah - 2020 - Journal of Mathematical Logic 21 (3).
    We investigate the behavior of cardinal characteristics of the reals under extensions that do not add new <κ-sequences. As an application, we show that consistently the followi...
    Download  
     
    Export citation  
     
    Bookmark  
  • Special ultrafilters and cofinal subsets of $$({}^omega omega, <^*)$$.Peter Nyikos - 2020 - Archive for Mathematical Logic 59 (7-8):1009-1026.
    The interplay between ultrafilters and unbounded subsets of \ with the order \ of strict eventual domination is studied. Among the tools are special kinds of non-principal ultrafilters on \. These include simple P-points; that is, ultrafilters with a base that is well-ordered with respect to the reverse of the order \ of almost inclusion. It is shown that the cofinality of such a base must be either \, the least cardinality of \-unbounded set, or \, the least cardinality of (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Rudin-Blass ordering of ultrafilters.Claude Laflamme & Jian-Ping Zhu - 1998 - Journal of Symbolic Logic 63 (2):584-592.
    We discuss the finite-to-one Rudin-Keisler ordering of ultrafilters on the natural numbers, which we baptize the Rudin-Blass ordering in honour of Professor Andreas Blass who worked extensively in the area. We develop and summarize many of its properties in relation to its bounding and dominating numbers, directedness, and provide applications to continuum theory. In particular, we prove in ZFC alone that there exists an ultrafilter with no Q-point below in the Rudin-Blass ordering.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (1 other version)Controlling cardinal characteristics without adding reals.Martin Goldstern, Jakob Kellner, Diego A. Mejía & Saharon Shelah - 2021 - Journal of Mathematical Logic 21 (3):2150018.
    We investigate the behavior of cardinal characteristics of the reals under extensions that do not add new [Formula: see text]-sequences (for some regular [Formula: see text]). As an application, we show that consistently the following cardinal characteristics can be different: The (“independent”) characteristics in Cichoń’s diagram, plus [Formula: see text]. (So we get thirteen different values, including [Formula: see text] and continuum). We also give constructions to alternatively separate other MA-numbers (instead of [Formula: see text]), namely: MA for [Formula: see (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Yet Another Ideal Version of the Bounding Number.Rafał Filipów & Adam Kwela - 2022 - Journal of Symbolic Logic 87 (3):1065-1092.
    Let $\mathcal {I}$ be an ideal on $\omega $. For $f,\,g\in \omega ^{\omega }$ we write $f \leq _{\mathcal {I}} g$ if $f(n) \leq g(n)$ for all $n\in \omega \setminus A$ with some $A\in \mathcal {I}$. Moreover, we denote $\mathcal {D}_{\mathcal {I}}=\{f\in \omega ^{\omega }: f^{-1}[\{n\}]\in \mathcal {I} \text { for every } n\in \omega \}$ (in particular, $\mathcal {D}_{\mathrm {Fin}}$ denotes the family of all finite-to-one functions).We examine cardinal numbers $\mathfrak {b}(\geq _{\mathcal {I}}\cap (\mathcal {D}_{\mathcal {I}} \times \mathcal {D}_{\mathcal (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the length of chains of proper subgroups covering a topological group.Taras Banakh, Dušan Repovš & Lyubomyr Zdomskyy - 2011 - Archive for Mathematical Logic 50 (3-4):411-421.
    We prove that if an ultrafilter \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{L}}$$\end{document} is not coherent to a Q-point, then each analytic non-σ-bounded topological group G admits an increasing chain \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\langle G_\alpha:\alpha < \mathfrak b(\mathcal L)\rangle}$$\end{document} of its proper subgroups such that: (i) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bigcup_{\alpha}G_\alpha=G}$$\end{document}; and (ii) For every σ-bounded subgroup H of G there exists α such that \documentclass[12pt]{minimal} \usepackage{amsmath} (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the cofinality of ultrapowers.Andreas Blass & Heike Mildenberger - 1999 - Journal of Symbolic Logic 64 (2):727-736.
    We prove some restrictions on the possible cofinalities of ultrapowers of the natural numbers with respect to ultrafilters on the natural numbers. The restrictions involve three cardinal characteristics of the continuum, the splitting number s, the unsplitting number r, and the groupwise density number g. We also prove some related results for reduced powers with respect to filters other than ultrafilters.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Mathias forcing and combinatorial covering properties of filters.David Chodounský, Dušan Repovš & Lyubomyr Zdomskyy - 2015 - Journal of Symbolic Logic 80 (4):1398-1410.
    We give topological characterizations of filters${\cal F}$onωsuch that the Mathias forcing${M_{\cal F}}$adds no dominating reals or preserves ground model unbounded families. This allows us to answer some questions of Brendle, Guzmán, Hrušák, Martínez, Minami, and Tsaban.
    Download  
     
    Export citation  
     
    Bookmark   13 citations