Switch to: References

Add citations

You must login to add citations.
  1. A note on r-maximal subspaces of V[infinity].David R. Guichard - 1984 - Annals of Pure and Applied Logic 26 (1):1.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Small Π0 1 Classes.Stephen Binns - 2005 - Archive for Mathematical Logic 45 (4):393-410.
    The property of smallness for Π0 1 classes is introduced and is investigated with respect to Medvedev and Muchnik degree. It is shown that the property of containing a small Π0 1 class depends only on the Muchnik degree of a Π0 1 class. A comparison is made with the idea of thinness for Π0 1 classesmsthm.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Small Π01 Classes.Stephen Binns - 2006 - Archive for Mathematical Logic 45 (4):393-410.
    The property of smallness for Π01 classes is introduced and is investigated with respect to Medvedev and Muchnik degree. It is shown that the property of containing a small Π01 class depends only on the Muchnik degree of a Π01 class. A comparison is made with the idea of thinness for Π01 classesmsthm.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Finding paths through narrow and wide trees.Stephen Binns & Bjørn Kjos-Hanssen - 2009 - Journal of Symbolic Logic 74 (1):349-360.
    We consider two axioms of second-order arithmetic. These axioms assert, in two different ways, that infinite but narrow binary trees always have infinite paths. We show that both axioms are strictly weaker than Weak König's Lemma, and incomparable in strength to the dual statement (WWKL) that wide binary trees have paths.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A Dichotomy of the Recursively Enumerable Sets.Robert W. Robinson - 1968 - Mathematical Logic Quarterly 14 (21-24):339-356.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Recursion theory on algebraic structures with independent sets.J. B. Remmel - 1980 - Annals of Mathematical Logic 18 (2):153.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Cuppability of Simple and Hypersimple Sets.Martin Kummer & Marcus Schaefer - 2007 - Notre Dame Journal of Formal Logic 48 (3):349-369.
    An incomplete degree is cuppable if it can be joined by an incomplete degree to a complete degree. For sets fulfilling some type of simplicity property one can now ask whether these sets are cuppable with respect to a certain type of reducibilities. Several such results are known. In this paper we settle all the remaining cases for the standard notions of simplicity and all the main strong reducibilities.
    Download  
     
    Export citation  
     
    Bookmark