Switch to: References

Add citations

You must login to add citations.
  1. Indifferent sets for genericity.Adam R. Day - 2013 - Journal of Symbolic Logic 78 (1):113-138.
    This paper investigates indifferent sets for comeager classes in Cantor space focusing of the class of all 1-generic sets and the class of all weakly 1-generic sets. Jockusch and Posner showed that there exist 1-generic sets that have indifferent sets [10]. Figueira, Miller and Nies have studied indifferent sets for randomness and other notions [7]. We show that any comeager class in Cantor space contains a comeager class with a universal indifferent set. A forcing construction is used to show that (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Promptness Does Not Imply Superlow Cuppability.David Diamondstone - 2009 - Journal of Symbolic Logic 74 (4):1264 - 1272.
    A classical theorem in computability is that every promptly simple set can be cupped in the Turing degrees to some complete set by a low c.e. set. A related question due to A. Nies is whether every promptly simple set can be cupped by a superlow c.e. set, i. e. one whose Turing jump is truth-table reducible to the halting problem θ'. A negative answer to this question is provided by giving an explicit construction of a promptly simple set that (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Strengthening prompt simplicity.David Diamondstone & Keng Meng Ng - 2011 - Journal of Symbolic Logic 76 (3):946 - 972.
    We introduce a natural strengthening of prompt simplicity which we call strong promptness, and study its relationship with existing lowness classes. This notion provides a ≤ wtt version of superlow cuppability. We show that every strongly prompt c.e. set is superlow cuppable. Unfortunately, strong promptness is not a Turing degree notion, and so cannot characterize the sets which are superlow cuppable. However, it is a wtt-degree notion, and we show that it characterizes the degrees which satisfy a wtt-degree notion very (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A classification of low c.e. sets and the Ershov hierarchy.Marat Faizrahmanov - forthcoming - Mathematical Logic Quarterly.
    In this paper, we prove several results about the Turing jumps of low c.e. sets. We show that only Δ‐levels of the Ershov Hierarchy can properly contain the Turing jumps of c.e. sets and that there exists an arbitrarily large computable ordinal with a normal notation such that the corresponding Δ‐level is proper for the Turing jump of some c.e. set. Next, we generalize the notion of jump traceability to the jump traceability with ‐ and ‐bound for every infinite computable (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Towards characterizing the >ω2-fickle recursively enumerable Turing degrees.Liling Ko - 2024 - Annals of Pure and Applied Logic 175 (4):103403.
    Download  
     
    Export citation  
     
    Bookmark  
  • Effective Domination and the Bounded Jump.Keng Meng Ng & Hongyuan Yu - 2020 - Notre Dame Journal of Formal Logic 61 (2):203-225.
    We study the relationship between effective domination properties and the bounded jump. We answer two open questions about the bounded jump: We prove that the analogue of Sacks jump inversion fails for the bounded jump and the wtt-reducibility. We prove that no c.e. bounded high set can be low by showing that they all have to be Turing complete. We characterize the class of c.e. bounded high sets as being those sets computing the Halting problem via a reduction with use (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A Hierarchy of Computably Enumerable Degrees.Rod Downey & Noam Greenberg - 2018 - Bulletin of Symbolic Logic 24 (1):53-89.
    We introduce a new hierarchy of computably enumerable degrees. This hierarchy is based on computable ordinal notations measuring complexity of approximation of${\rm{\Delta }}_2^0$functions. The hierarchy unifies and classifies the combinatorics of a number of diverse constructions in computability theory. It does so along the lines of the high degrees (Martin) and the array noncomputable degrees (Downey, Jockusch, and Stob). The hierarchy also gives a number of natural definability results in the c.e. degrees, including a definable antichain.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Notes on Sacks’ Splitting Theorem.Klaus Ambos-Spies, Rod G. Downey, Martin Monath & N. G. Keng Meng - forthcoming - Journal of Symbolic Logic.
    We explore the complexity of Sacks’ Splitting Theorem in terms of the mind change functions associated with the members of the splits. We prove that, for any c.e. set A, there are low computably enumerable sets $A_0\sqcup A_1=A$ splitting A with $A_0$ and $A_1$ both totally $\omega ^2$ -c.a. in terms of the Downey–Greenberg hierarchy, and this result cannot be improved to totally $\omega $ -c.a. as shown in [9]. We also show that if cone avoidance is added then there (...)
    Download  
     
    Export citation  
     
    Bookmark