Switch to: References

Add citations

You must login to add citations.
  1. Antichains of perfect and splitting trees.Paul Hein & Otmar Spinas - 2020 - Archive for Mathematical Logic 59 (3-4):367-388.
    We investigate uncountable maximal antichains of perfect trees and of splitting trees. We show that in the case of perfect trees they must have size of at least the dominating number, whereas for splitting trees they are of size at least \\), i.e. the covering coefficient of the meager ideal. Finally, we show that uncountable maximal antichains of superperfect trees are at least of size the bounding number; moreover we show that this is best possible.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Silver Antichains.Otmar Spinas & Marek Wyszkowski - 2015 - Journal of Symbolic Logic 80 (2):503-519.
    In this paper we investigate the structure of uncountable maximal antichains of Silver forcing and show that they have to be at least of size d, where d is the dominating number. Part of this work can be used to show that the additivity of the Silver forcing ideal has size at least the unbounding number b. It follows that every reasonable amoeba Silver forcing adds a dominating real.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Collapsing $$omega _2$$ with semi-proper forcing.Stevo Todorcevic - 2018 - Archive for Mathematical Logic 57 (1-2):185-194.
    We examine the differences between three standard classes of forcing notions relative to the way they collapse the continuum. It turns out that proper and semi-proper posets behave differently in that respect from the class of posets that preserve stationary subsets of \.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Cardinal Invariants and the Collapse of the Continuum by Sacks Forcing.Miroslav Repický - 2008 - Journal of Symbolic Logic 73 (2):711 - 727.
    We study cardinal invariants of systems of meager hereditary families of subsets of ω connected with the collapse of the continuum by Sacks forcing S and we obtain a cardinal invariant yω such that S collapses the continuum to yω and y ≤ yω ≤ b. Applying the Baumgartner-Dordal theorem on preservation of eventually narrow sequences we obtain the consistency of y = yω < b. We define two relations $\leq _{0}^{\ast}$ and $\leq _{1}^{\ast}$ on the set $(^{\omega}\omega)_{{\rm Fin}}$ of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation