Switch to: References

Add citations

You must login to add citations.
  1. One Variable Relevant Logics are S5ish.Nicholas Ferenz - 2024 - Journal of Philosophical Logic 53 (4):909-931.
    Here I show that the one-variable fragment of several first-order relevant logics corresponds to certain S5ish extensions of the underlying propositional relevant logic. In particular, given a fairly standard translation between modal and one-variable languages and a permuting propositional relevant logic L, a formula $$\mathcal {A}$$ A of the one-variable fragment is a theorem of LQ (QL) iff its translation is a theorem of L5 (L.5). The proof is model-theoretic. In one direction, semantics based on the Mares-Goldblatt [15] semantics for (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Quantified Modal Relevant Logics.Nicholas Ferenz - 2023 - Review of Symbolic Logic 16 (1):210-240.
    Here, I combine the semantics of Mares and Goldblatt [20] and Seki [29, 30] to develop a semantics for quantified modal relevant logics extending ${\bf B}$. The combination requires demonstrating that the Mares–Goldblatt approach is apt for quantified extensions of ${\bf B}$ and other relevant logics, but no significant bridging principles are needed. The result is a single semantic approach for quantified modal relevant logics. Within this framework, I discuss the requirements a quantified modal relevant logic must satisfy to be (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Quantifying over propositions in relevance logic: nonaxiomatisability of primary interpretations of ∀ p and ∃ p.Philip Kremer - 1993 - Journal of Symbolic Logic 58 (1):334-349.
    A typical approach to semantics for relevance (and other) logics: specify a class of algebraic structures and take amodelto be one of these structures, α, together with some function or relation which associates with every formulaAa subset ofα. (This is the approach of, among others, Urquhart, Routley and Meyer and Fine.) In some cases there are restrictions on the class of subsets of α with which a formula can be associated: for example, in the semantics of Routley and Meyer [1973], (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • (1 other version)Bi-approximation Semantics for Substructural Logic at Work.Tomoyuki Suzuki - 1998 - In Marcus Kracht, Maarten de Rijke, Heinrich Wansing & Michael Zakharyaschev (eds.), Advances in Modal Logic. CSLI Publications. pp. 411-433.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Canonicity results of substructural and lattice-based logics.Tomoyuki Suzuki - 2011 - Review of Symbolic Logic 4 (1):1-42.
    In this paper, we extend the canonicity methodology in Ghilardi & Meloni (1997) to arbitrary lattice expansions, and syntactically describe canonical inequalities for lattice expansions consisting of -meet preserving operations, -multiplicative operations, adjoint pairs, and constants. This approach gives us a uniform account of canonicity for substructural and lattice-based logics. Our method not only covers existing results, but also systematically accounts for many canonical inequalities containing nonsmooth additive and multiplicative uniform operations. Furthermore, we compare our technique with the approach in (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • First-Order Relevant Reasoners in Classical Worlds.Nicholas Ferenz - 2024 - Review of Symbolic Logic 17 (3):793-818.
    Sedlár and Vigiani [18] have developed an approach to propositional epistemic logics wherein (i) an agent’s beliefs are closed under relevant implication and (ii) the agent is located in a classical possible world (i.e., the non-modal fragment is classical). Here I construct first-order extensions of these logics using the non-Tarskian interpretation of the quantifiers introduced by Mares and Goldblatt [12], and later extended to quantified modal relevant logics by Ferenz [6]. Modular soundness and completeness are proved for constant domain semantics, (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations