Switch to: References

Add citations

You must login to add citations.
  1. Scientific Theories and Philosophical Stances: Themes from van Fraassen.Claus Beisbart & Michael Frauchiger (eds.) - 2024 - De Gruyter.
    Since the publication of his seminal monograph "The scientific image", Bas van Fraassen is a key figure in philosophy of science. In this book, other philosophers with various outlooks critically discuss his work on theories, empiricism and philosophical stances. The book starts with a new article by van Fraassen on his preferred account of theories, the so-called semantic view. This account is now 50 years old, and van Fraassen takes this anniversary as an opportunity to review the account, its history (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Relational Quantum Mechanics, quantum relativism, and the iteration of relativity.Timotheus Riedel - 2024 - Studies in History and Philosophy of Science Part A 104 (C):109-118.
    The idea that the dynamical properties of quantum systems are invariably relative to other systems has recently regained currency. Using Relational Quantum Mechanics (RQM) for a case study, this paper calls attention to a question that has been underappreciated in the debate about quantum relativism: the question of whether relativity iterates. Are there absolute facts about the properties one system possesses relative to a specified reference, or is this again a relative matter, and so on? It is argued that RQM (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the consistency of relative facts.Eric G. Cavalcanti, Andrea Di Biagio & Carlo Rovelli - 2023 - European Journal for Philosophy of Science 13 (4):1-7.
    Lawrence et al. have presented an argument purporting to show that “relative facts do not exist” and, consequently, “Relational Quantum Mechanics is incompatible with quantum mechanics”. The argument is based on a GHZ-like contradiction between constraints satisfied by measurement outcomes in an extended Wigner’s friend scenario. Here we present a strengthened version of the argument, and show why, contrary to the claim by Lawrence et al., these arguments do not contradict the consistency of a theory of relative facts. Rather, considering (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The sky is blue, and other reasons quantum mechanics is not underdetermined by evidence.David Wallace - 2023 - European Journal for Philosophy of Science 13 (4):1-29.
    I criticize the widely-defended view that the quantum measurement problem is an example of underdetermination of theory by evidence: more specifically, the view that the unmodified, unitary quantum formalism (interpreted following Everett) is empirically indistinguishable from Bohmian Mechanics and from dynamical-collapse theories like the GRW or CSL theories. I argue that there as yet no empirically successful generalization of either theory to interacting quantum field theory and so the apparent underdetermination is broken by a very large class of quantum experiments (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • On entanglement as a relation.Enrico Cinti, Alberto Corti & Marco Sanchioni - 2022 - European Journal for Philosophy of Science 12 (1):1-29.
    This paper aims to characterise properly entanglement as an external relation obtaining between multiple quantum degrees of freedom. In particular, we argue that the entanglement relation is a unique relation fully characterised by mutual information, i.e. a quantity standardly used as a measure of entanglement. This analysis leads us to propose a new metaphysical account of entanglement, which we call Relational Entanglement Tesseract. Such an account characterises entanglement for both bipartite and multipartite cases, and, at the same time, it satisfies (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Barad, Bohr, and quantum mechanics.Jan Faye & Rasmus Jaksland - 2021 - Synthese 199:8231-8255.
    The last decade has seen an increasing number of references to quantum mechanics in the humanities and social sciences. This development has in particular been driven by Karen Barad’s agential realism: a theoretical framework that, based on Niels Bohr’s interpretation of quantum mechanics, aims to inform social theorizing. In dealing with notions such as agency, power, and embodiment as well as the relation between the material and the discursive level, the influence of agential realism in fields such as feminist science (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Sparks of New Metaphysics and the Limits of Explanatory Abstractions.Thomas Hauer - 2024 - Metaphysica 25 (1):15-39.
    Physical reality as an explanatory model is an abstraction of the mind. Every perceptual system is a user interface, like the dashboard of an aeroplane or the desktop of a computer. We do not see or otherwise perceive reality but only interface with reality. The user interface concept is a starting point for a critical dialogue with those epistemic theories that present themselves as veridical and take explanatory abstractions as ontological primitives. At the heart of any scientific model are assumptions (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Assessing relational quantum mechanics.Ricardo Muciño, Elias Okon & Daniel Sudarsky - 2022 - Synthese 200 (5):1-26.
    Relational Quantum Mechanics is an interpretation of quantum theory based on the idea of abolishing the notion of absolute states of systems, in favor of states of systems relative to other systems. Such a move is claimed to solve the conceptual problems of standard quantum mechanics. Moreover, RQM has been argued to account for all quantum correlations without invoking non-local effects and, in spite of embracing a fully relational stance, to successfully explain how different observers exchange information. In this work, (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Stable Facts, Relative Facts.Carlo Rovelli & Andrea Di Biagio - 2021 - Foundations of Physics 51 (1):1-13.
    Facts happen at every interaction, but they are not absolute: they are relative to the systems involved in the interaction. Stable facts are those whose relativity can effectively be ignored. In this work, we describe how stable facts emerge in a world of relative facts and discuss their respective roles in connecting quantum theory and the world. The distinction between relative and stable facts resolves the difficulties pointed out by the no-go theorem of Frauchiger and Renner, and is consistent with (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Against the Tyranny of ‘Pure States’ in Quantum Theory.Christian de Ronde & Cesar Massri - 2021 - Foundations of Science 27 (1):27-41.
    We argue that the notion of pure sate within Standard Quantum Mechanics is presently applied within the specialized literature in relation to two mutually inconsistent definitions. While the first provides a basis-dependent definition which makes reference to the certain prediction of measurement outcomes, the latter provides a purely abstract invariant definition which lacks operational content. In this work we derive a theorem which exposes the serious inconsistencies existent within these two incompatible definitions of purity.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Space and Time in Loop Quantum Gravity.Carlo Rovelli - unknown
    Quantum gravity is expected to require modifications of the notions of space and time. I discuss and clarify how this happens in Loop Quantum Gravity.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • QBism and Relational Quantum Mechanics compared.Jacques Pienaar - 2021 - Foundations of Physics 51 (5):1-18.
    The subjective Bayesian interpretation of quantum mechanics and Rovelli’s relational interpretation of quantum mechanics are both notable for embracing the radical idea that measurement outcomes correspond to events whose occurrence is relative to an observer. Here we provide a detailed study of their similarities and especially their differences.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Interpreting Quantum Mechanics and Predictability in Terms of Facts About the Universe.Andrew Knight - manuscript
    A potentially new interpretation of quantum mechanics posits the state of the universe as a consistent set of facts that are instantiated in the correlations among entangled objects. A fact (or event) occurs exactly when the number or density of future possibilities decreases, and a quantum superposition exists if and only if the facts of the universe are consistent with the superposition. The interpretation sheds light on both in-principle and real-world predictability of the universe.
    Download  
     
    Export citation  
     
    Bookmark  
  • The Semantic Approach, After 50 Years.Bas C. Van Fraassen - 2024 - In Claus Beisbart & Michael Frauchiger (eds.), Scientific Theories and Philosophical Stances: Themes from van Fraassen. De Gruyter. pp. 23-86.
    Download  
     
    Export citation  
     
    Bookmark  
  • Open Problems in Relational Quantum Mechanics.Federico Laudisa - 2019 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 50 (2):215-230.
    The Rovelli relational interpretation of quantum mechanics is based on the assumption that the notion of observer-independent state of a physical system is to be rejected. In RQM the primary target of the theory is the analysis of the whole network of relations that may be established among quantum subsystems, and the shift to a relational perspective is supposed to address in a satisfactory way the general problem of the interpretation of quantum mechanics. Here I discuss two basic issues, that (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • How Different Interpretations of Quantum Mechanics can Enrich Each Other: The Case of the Relational Quantum Mechanics and the Modal-Hamiltonian Interpretation.Olimpia Lombardi & Juan Sebastián Ardenghi - 2022 - Foundations of Physics 52 (3):1-21.
    In the literature on the interpretation of quantum mechanics, not many works attempt to adopt a proactive perspective aimed at seeing how different interpretations can enrich each other through a productive dialogue. In particular, few proposals have been devised to show that different approaches can be clarified by comparing them, and can even complement each other, improving or leading to a more fertile overall approach. The purpose of this paper is framed within this perspective of complementation and mutual enrichment. In (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Metaphysical Challenge of Loop Quantum Gravity.Martin Calamari - 2021 - Studies in History and Philosophy of Science Part A 86 (C):68-83.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Bundle Theory Approach to Relational Quantum Mechanics.Andrea Oldofredi - 2021 - Foundations of Physics 51 (1):1-22.
    The present essay provides a new metaphysical interpretation of Relational Quantum Mechanics (RQM) in terms of mereological bundle theory. The essential idea is to claim that a physical system in RQM can be defined as a mereological fusion of properties whose values may vary for different observers. Abandoning the Aristotelian tradition centered on the notion of substance, I claim that RQM embraces an ontology of properties that finds its roots in the heritage of David Hume. To this regard, defining what (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Relational quantum mechanics.Federico Laudisa - 2008 - Stanford Encyclopedia of Philosophy.
    Relational quantum mechanics is an interpretation of quantum theory which discards the notions of absolute state of a system, absolute value of its physical quantities, or absolute event. The theory describes only the way systems affect each other in the course of physical interactions. State and physical quantities refer always to the interaction, or the relation, between two systems. Nevertheless, the theory is assumed to be complete. The physical content of quantum theory is understood as expressing the net of relations (...)
    Download  
     
    Export citation  
     
    Bookmark   44 citations  
  • Does Newtonian Space Provide Identity to Quantum Systems?Décio Krause - 2019 - Foundations of Science 24 (2):197-215.
    Physics is not just mathematics. This seems trivial, but poses difficult and interesting questions. In this paper we analyse a particular discrepancy between non-relativistic quantum mechanics and ‘classical’ space and time. We also suggest, but not discuss, the case of the relativistic QM. In this work, we are more concerned with the notion of space and its mathematical representation. The mathematics entails that any two spatially separated objects are necessarily different, which implies that they are discernible —we say that the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Relational Quantum Mechanics and the PBR Theorem: A Peaceful Coexistence.Andrea Oldofredi & Claudio Calosi - 2021 - Foundations of Physics 51 (4):1-21.
    According to Relational Quantum Mechanics the wave function \ is considered neither a concrete physical item evolving in spacetime, nor an object representing the absolute state of a certain quantum system. In this interpretative framework, \ is defined as a computational device encoding observers’ information; hence, RQM offers a somewhat epistemic view of the wave function. This perspective seems to be at odds with the PBR theorem, a formal result excluding that wave functions represent knowledge of an underlying reality described (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Relational Quantum Mechanics and Probability.M. Trassinelli - 2018 - Foundations of Physics 48 (9):1092-1111.
    We present a derivation of the third postulate of relational quantum mechanics from the properties of conditional probabilities. The first two RQM postulates are based on the information that can be extracted from interaction of different systems, and the third postulate defines the properties of the probability function. Here we demonstrate that from a rigorous definition of the conditional probability for the possible outcomes of different measurements, the third postulate is unnecessary and the Born’s rule naturally emerges from the first (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Relational Quantum Mechanics is About Facts, Not States: A Reply to Pienaar and Brukner.Andrea Di Biagio & Carlo Rovelli - 2022 - Foundations of Physics 52 (3):1-21.
    In recent works, Časlav Brukner and Jacques Pienaar have raised interesting objections to the relational interpretation of quantum mechanics. We answer these objections in detail and show that, far from questioning the viability of the interpretation, they sharpen and clarify it.
    Download  
     
    Export citation  
     
    Bookmark   13 citations