Switch to: References

Add citations

You must login to add citations.
  1. Effective categoricity of equivalence structures.Wesley Calvert, Douglas Cenzer, Valentina Harizanov & Andrei Morozov - 2006 - Annals of Pure and Applied Logic 141 (1):61-78.
    We investigate effective categoricity of computable equivalence structures . We show that is computably categorical if and only if has only finitely many finite equivalence classes, or has only finitely many infinite classes, bounded character, and at most one finite k such that there are infinitely many classes of size k. We also prove that all computably categorical structures are relatively computably categorical, that is, have computably enumerable Scott families of existential formulas. Since all computable equivalence structures are relatively categorical, (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Effective categoricity of Abelian p -groups.Wesley Calvert, Douglas Cenzer, Valentina S. Harizanov & Andrei Morozov - 2009 - Annals of Pure and Applied Logic 159 (1-2):187-197.
    We investigate effective categoricity of computable Abelian p-groups . We prove that all computably categorical Abelian p-groups are relatively computably categorical, that is, have computably enumerable Scott families of existential formulas. We investigate which computable Abelian p-groups are categorical and relatively categorical.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Self-Embeddings of Computable Trees.Stephen Binns, Bjørn Kjos-Hanssen, Manuel Lerman, James H. Schmerl & Reed Solomon - 2008 - Notre Dame Journal of Formal Logic 49 (1):1-37.
    We divide the class of infinite computable trees into three types. For the first and second types, 0' computes a nontrivial self-embedding while for the third type 0'' computes a nontrivial self-embedding. These results are optimal and we obtain partial results concerning the complexity of nontrivial self-embeddings of infinite computable trees considered up to isomorphism. We show that every infinite computable tree must have either an infinite computable chain or an infinite Π01 antichain. This result is optimal and has connections (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Computable Heyting Algebras with Distinguished Atoms and Coatoms.Nikolay Bazhenov - 2023 - Journal of Logic, Language and Information 32 (1):3-18.
    The paper studies Heyting algebras within the framework of computable structure theory. We prove that the class _K_ containing all Heyting algebras with distinguished atoms and coatoms is complete in the sense of the work of Hirschfeldt et al. (Ann Pure Appl Logic 115(1-3):71-113, 2002). This shows that the class _K_ is rich from the computability-theoretic point of view: for example, every possible degree spectrum can be realized by a countable structure from _K_. In addition, there is no simple syntactic (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Computability-theoretic categoricity and Scott families.Ekaterina Fokina, Valentina Harizanov & Daniel Turetsky - 2019 - Annals of Pure and Applied Logic 170 (6):699-717.
    Download  
     
    Export citation  
     
    Bookmark