Switch to: References

Add citations

You must login to add citations.
  1. Democratizing Algorithmic Fairness.Pak-Hang Wong - 2020 - Philosophy and Technology 33 (2):225-244.
    Algorithms can now identify patterns and correlations in the (big) datasets, and predict outcomes based on those identified patterns and correlations with the use of machine learning techniques and big data, decisions can then be made by algorithms themselves in accordance with the predicted outcomes. Yet, algorithms can inherit questionable values from the datasets and acquire biases in the course of (machine) learning, and automated algorithmic decision-making makes it more difficult for people to see algorithms as biased. While researchers have (...)
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • Algorithmic bias and the Value Sensitive Design approach.Judith Simon, Pak-Hang Wong & Gernot Rieder - 2020 - Internet Policy Review 9 (4).
    Recently, amid growing awareness that computer algorithms are not neutral tools but can cause harm by reproducing and amplifying bias, attempts to detect and prevent such biases have intensified. An approach that has received considerable attention in this regard is the Value Sensitive Design (VSD) methodology, which aims to contribute to both the critical analysis of (dis)values in existing technologies and the construction of novel technologies that account for specific desired values. This article provides a brief overview of the key (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • From FAIR data to fair data use: Methodological data fairness in health-related social media research.Hywel Williams, Lora Fleming, Benedict W. Wheeler, Rebecca Lovell & Sabina Leonelli - 2021 - Big Data and Society 8 (1).
    The paper problematises the reliability and ethics of using social media data, such as sourced from Twitter or Instagram, to carry out health-related research. As in many other domains, the opportunity to mine social media for information has been hailed as transformative for research on well-being and disease. Considerations around the fairness, responsibilities and accountabilities relating to using such data have often been set aside, on the understanding that as long as data were anonymised, no real ethical or scientific issue (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations