Switch to: References

Add citations

You must login to add citations.
  1. Klein-Weyl's program and the ontology of gauge and quantum systems.Gabriel Catren - 2018 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 61:25-40.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A defence of informational structural realism.Luciano Floridi - 2008 - Synthese 161 (2):219-253.
    This is the revised version of an invited keynote lecture delivered at the "1st Australian Computing and Philosophy Conference". The paper is divided into two parts. The first part defends an informational approach to structural realism. It does so in three steps. First, it is shown that, within the debate about structural realism, epistemic and ontic structural realism are reconcilable. It follows that a version of OSR is defensible from a structuralist-friendly position. Second, it is argued that a version of (...)
    Download  
     
    Export citation  
     
    Bookmark   87 citations  
  • Logic of Gauge.Alexander Afriat - 2019 - In Carlos Lobo & Julien Bernard (eds.), Weyl and the Problem of Space: From Science to Philosophy. Springer Verlag.
    The logic of gauge theory is considered by tracing its development from general relativity to Yang-Mills theory, through Weyl's two gauge theories. A handful of elements---which for want of better terms can be called \emph{geometrical justice}, \emph{matter wave}, \emph{second clock effect}, \emph{twice too many energy levels}---are enough to produce Weyl's second theory; and from there, all that's needed to reach the Yang-Mills formalism is a \emph{non-Abelian structure group} (say $\mathbb{SU}\textrm{(}N\textrm{)}$).
    Download  
     
    Export citation  
     
    Bookmark  
  • The relativity of inertia and reality of nothing.Alexander Afriat & Ermenegildo Caccese - 2010 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 41 (1):9-26.
    The determination of inertia by matter is looked at in general relativity, where inertia can be represented by affine or projective structure. The matter tensor T seems to underdetermine affine structure by ten degrees of freedom, eight of which can be eliminated by gauge choices, leaving two. Their physical meaning---which is bound up with that of gravitational waves and the pseudotensor t, and with the conservation of energy-momentum---is considered, along with the dependence of reality on invariance and of causal explanation (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations