In information societies, operations, decisions and choices previously left to humans are increasingly delegated to algorithms, which may advise, if not decide, about how data should be interpreted and what actions should be taken as a result. More and more often, algorithms mediate social processes, business transactions, governmental decisions, and how we perceive, understand, and interact among ourselves and with the environment. Gaps between the design and operation of algorithms and our understanding of their ethical implications can have severe consequences (...) affecting individuals as well as groups and whole societies. This paper makes three contributions to clarify the ethical importance of algorithmic mediation. It provides a prescriptive map to organise the debate. It reviews the current discussion of ethical aspects of algorithms. And it assesses the available literature in order to identify areas requiring further work to develop the ethics of algorithms. (shrink)
This article presents the first, systematic analysis of the ethical challenges posed by recommender systems through a literature review. The article identifies six areas of concern, and maps them onto a proposed taxonomy of different kinds of ethical impact. The analysis uncovers a gap in the literature: currently user-centred approaches do not consider the interests of a variety of other stakeholders—as opposed to just the receivers of a recommendation—in assessing the ethical impacts of a recommender system.
The idea of Artificial Intelligence for Social Good (henceforth AI4SG) is gaining traction within information societies in general and the AI community in particular. It has the potential to address social problems effectively through the development of AI-based solutions. Yet, to date, there is only limited understanding of what makes AI socially good in theory, what counts as AI4SG in practice, and how to reproduce its initial successes in terms of policies (Cath et al. 2018). This article addresses this gap (...) by extrapolating seven ethical factors that are essential for future AI4SG initiatives from the analysis of 27 case studies of AI4SG projects. Some of these factors are almost entirely novel to AI, while the significance of other factors is heightened by the use of AI. From each of these factors, corresponding best practices are formulated which, subject to context and balance, may serve as preliminary guidelines to ensure that well-designed AI is more likely to serve the social good. (shrink)
This article presents the first thematic review of the literature on the ethical issues concerning digital well-being. The term ‘digital well-being’ is used to refer to the impact of digital technologies on what it means to live a life that is good for a human being. The review explores the existing literature on the ethics of digital well-being, with the goal of mapping the current debate and identifying open questions for future research. The review identifies major issues related to several (...) key social domains: healthcare, education, governance and social development, and media and entertainment. It also highlights three broader themes: positive computing, personalised human–computer interaction, and autonomy and self-determination. The review argues that three themes will be central to ongoing discussions and research by showing how they can be used to identify open questions related to the ethics of digital well-being. (shrink)
Cloud computing is rapidly gaining traction in business. It offers businesses online services on demand (such as Gmail, iCloud and Salesforce) and allows them to cut costs on hardware and IT support. This is the first paper in business ethics dealing with this new technology. It analyzes the informational duties of hosting companies that own and operate cloud computing datacenters (e.g., Amazon). It considers the cloud services providers leasing ‘space in the cloud’ from hosting companies (e.g, Dropbox, Salesforce). And it (...) examines the business and private ‘clouders’ using these services. The first part of the paper argues that hosting companies, services providers and clouders have mutual informational (epistemic) obligations to provide and seek information about relevant issues such as consumer privacy, reliability of services, data mining and data ownership. The concept of interlucency is developed as an epistemic virtue governing ethically effective communication. The second part considers potential forms of government restrictions on or proscriptions against the development and use of cloud computing technology. Referring to the concept of technology neutrality, it argues that interference with hosting companies and cloud services providers is hardly ever necessary or justified. It is argued, too, however, that businesses using cloud services (banks, law firms, hospitals etc. storing client data in the cloud, e.g.) will have to follow rather more stringent regulations. (shrink)
Common mental health disorders are rising globally, creating a strain on public healthcare systems. This has led to a renewed interest in the role that digital technologies may have for improving mental health outcomes. One result of this interest is the development and use of artificial intelligence for assessing, diagnosing, and treating mental health issues, which we refer to as ‘digital psychiatry’. This article focuses on the increasing use of digital psychiatry outside of clinical settings, in the following sectors: education, (...) employment, financial services, social media, and the digital well-being industry. We analyse the ethical risks of deploying digital psychiatry in these sectors, emphasising key problems and opportunities for public health, and offer recommendations for protecting and promoting public health and well-being in information societies. (shrink)
This chapter serves as an introduction to the edited collection of the same name, which includes chapters that explore digital well-being from a range of disciplinary perspectives, including philosophy, psychology, economics, health care, and education. The purpose of this introductory chapter is to provide a short primer on the different disciplinary approaches to the study of well-being. To supplement this primer, we also invited key experts from several disciplines—philosophy, psychology, public policy, and health care—to share their thoughts on what they (...) believe are the most important open questions and ethical issues for the multi-disciplinary study of digital well-being. We also introduce and discuss several themes that we believe will be fundamental to the ongoing study of digital well-being: digital gratitude, automated interventions, and sustainable co-well-being. (shrink)
This article analyses the ethical aspects of multistakeholder recommendation systems (RSs). Following the most common approach in the literature, we assume a consequentialist framework to introduce the main concepts of multistakeholder recommendation. We then consider three research questions: who are the stakeholders in a RS? How are their interests taken into account when formulating a recommendation? And, what is the scientific paradigm underlying RSs? Our main finding is that multistakeholder RSs (MRSs) are designed and theorised, methodologically, according to neoclassical welfare (...) economics. We consider and reply to some methodological objections to MRSs on this basis, concluding that the multistakeholder approach offers the resources to understand the normative social dimension of RSs. (shrink)
Healthcare systems across the globe are struggling with increasing costs and worsening outcomes. This presents those responsible for overseeing healthcare with a challenge. Increasingly, policymakers, politicians, clinical entrepreneurs and computer and data scientists argue that a key part of the solution will be ‘Artificial Intelligence’ (AI) – particularly Machine Learning (ML). This argument stems not from the belief that all healthcare needs will soon be taken care of by “robot doctors.” Instead, it is an argument that rests on the classic (...) counterfactual definition of AI as an umbrella term for a range of techniques that can be used to make machines complete tasks in a way that would be considered intelligent were they to be completed by a human. Automation of this nature could offer great opportunities for the improvement of healthcare services and ultimately patients’ health by significantly improving human clinical capabilities in diagnosis, drug discovery, epidemiology, personalised medicine, and operational efficiency. However, if these AI solutions are to be embedded in clinical practice, then at least three issues need to be considered: the technical possibilities and limitations; the ethical, regulatory and legal framework; and the governance framework. In this article, we report on the results of a systematic analysis designed to provide a clear overview of the second of these elements: the ethical, regulatory and legal framework. We find that ethical issues arise at six levels of abstraction (individual, interpersonal, group, institutional, sectoral, and societal) and can be categorised as epistemic, normative, or overarching. We conclude by stressing how important it is that the ethical challenges raised by implementing AI in healthcare settings are tackled proactively rather than reactively and map the key considerations for policymakers to each of the ethical concerns highlighted. (shrink)
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.