Switch to: References

Add citations

You must login to add citations.
  1. Nonstandard second-order arithmetic and Riemannʼs mapping theorem.Yoshihiro Horihata & Keita Yokoyama - 2014 - Annals of Pure and Applied Logic 165 (2):520-551.
    In this paper, we introduce systems of nonstandard second-order arithmetic which are conservative extensions of systems of second-order arithmetic. Within these systems, we do reverse mathematics for nonstandard analysis, and we can import techniques of nonstandard analysis into analysis in weak systems of second-order arithmetic. Then, we apply nonstandard techniques to a version of Riemannʼs mapping theorem, and show several different versions of Riemannʼs mapping theorem.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Reverse-engineering Reverse Mathematics.Sam Sanders - 2013 - Annals of Pure and Applied Logic 164 (5):528-541.
    An important open problem in Reverse Mathematics is the reduction of the first-order strength of the base theory from IΣ1IΣ1 to IΔ0+expIΔ0+exp. The system ERNA, a version of Nonstandard Analysis based on the system IΔ0+expIΔ0+exp, provides a partial solution to this problem. Indeed, weak Königʼs lemma and many of its equivalent formulations from Reverse Mathematics can be ‘pushed down’ into ERNA, while preserving the equivalences, but at the price of replacing equality with ‘≈’, i.e. infinitesimal proximity . The logical principle (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Dirac delta function in two settings of Reverse Mathematics.Sam Sanders & Keita Yokoyama - 2012 - Archive for Mathematical Logic 51 (1-2):99-121.
    The program of Reverse Mathematics (Simpson 2009) has provided us with the insight that most theorems of ordinary mathematics are either equivalent to one of a select few logical principles, or provable in a weak base theory. In this paper, we study the properties of the Dirac delta function (Dirac 1927; Schwartz 1951) in two settings of Reverse Mathematics. In particular, we consider the Dirac Delta Theorem, which formalizes the well-known property \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On Algorithm and Robustness in a Non-standard Sense.Sam Sanders - 2013 - In Hanne Andersen, Dennis Dieks, Wenceslao J. Gonzalez, Thomas Uebel & Gregory Wheeler (eds.), New Challenges to Philosophy of Science. Springer Verlag. pp. 99--112.
    Download  
     
    Export citation  
     
    Bookmark  
  • The computational content of Nonstandard Analysis.Sam Sanders - unknown
    Kohlenbach's proof mining program deals with the extraction of effective information from typically ineffective proofs. Proof mining has its roots in Kreisel's pioneering work on the so-called unwinding of proofs. The proof mining of classical mathematics is rather restricted in scope due to the existence of sentences without computational content which are provable from the law of excluded middle and which involve only two quantifier alternations. By contrast, we show that the proof mining of classical Nonstandard Analysis has a very (...)
    Download  
     
    Export citation  
     
    Bookmark