Switch to: References

Add citations

You must login to add citations.
  1. Anatomy’s role in mechanistic explanations of organism behaviour.Aliya R. Dewey - 2024 - Synthese 203 (5):1-32.
    Explanations in behavioural neuroscience are often said to be mechanistic in the sense that they explain an organism’s behaviour by describing the activities and organisation of the organism’s parts that are “constitutively relevant” to organism behaviour. Much has been said about the constitutive relevance of working parts (in debates about the so-called “mutual manipulability criterion”), but relatively little has been said about the constitutive relevance of the organising relations between working parts. Some New Mechanists seem to endorse a simple causal-linking (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Integrating Philosophy of Understanding with the Cognitive Sciences.Kareem Khalifa, Farhan Islam, J. P. Gamboa, Daniel Wilkenfeld & Daniel Kostić - 2022 - Frontiers in Systems Neuroscience 16.
    We provide two programmatic frameworks for integrating philosophical research on understanding with complementary work in computer science, psychology, and neuroscience. First, philosophical theories of understanding have consequences about how agents should reason if they are to understand that can then be evaluated empirically by their concordance with findings in scientific studies of reasoning. Second, these studies use a multitude of explanations, and a philosophical theory of understanding is well suited to integrating these explanations in illuminating ways.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)How to build a brain: from function to implementation.Chris Eliasmith - 2007 - Synthese 159 (3):373-388.
    To have a fully integrated understanding of neurobiological systems, we must address two fundamental questions: 1. What do brains do (what is their function)? and 2. How do brains do whatever it is that they do (how is that function implemented)? I begin by arguing that these questions are necessarily inter-related. Thus, addressing one without consideration of an answer to the other, as is often done, is a mistake. I then describe what I take to be the best available approach (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • (1 other version)How to build a brain: From function to implementation.Chris Eliasmith - 2006 - Synthese 153 (3):373-388.
    To have a fully integrated understanding of neurobiological systems, we must address two fundamental questions: 1. What do brains do (what is their function)? and 2. How do brains do whatever it is that they do (how is that function implemented)? I begin by arguing that these questions are necessarily inter-related. Thus, addressing one without consideration of an answer to the other, as is often done, is a mistake. I then describe what I take to be the best available approach (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Varieties of Analog and Digital Representation.Whit Schonbein - 2014 - Minds and Machines 24 (4):415-438.
    The ‘received view’ of the analog–digital distinction holds that analog representations are continuous while digital representations are discrete. In this paper I first provide support for the received view by showing how it (1) emerges from the theory of computation, and (2) explains engineering practices. Second, I critically assess several recently offered alternatives, arguing that to the degree they are justified they demonstrate not that the received view is incorrect, but rather that distinct senses of the terms have become entrenched (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Explanation in Computational Neuroscience: Causal and Non-causal.M. Chirimuuta - 2018 - British Journal for the Philosophy of Science 69 (3):849-880.
    This article examines three candidate cases of non-causal explanation in computational neuroscience. I argue that there are instances of efficient coding explanation that are strongly analogous to examples of non-causal explanation in physics and biology, as presented by Batterman, Woodward, and Lange. By integrating Lange’s and Woodward’s accounts, I offer a new way to elucidate the distinction between causal and non-causal explanation, and to address concerns about the explanatory sufficiency of non-mechanistic models in neuroscience. I also use this framework to (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Against neuroclassicism: On the perils of armchair neuroscience.Alex Morgan - 2022 - Mind and Language 37 (3):329-355.
    Neuroclassicism is the view that cognition is explained by “classical” computing mechanisms in the nervous system that exhibit a clear demarcation between processing machinery and read–write memory. The psychologist C. R. Gallistel has mounted a sophisticated defense of neuroclassicism by drawing from ethology and computability theory to argue that animal brains necessarily contain read–write memory mechanisms. This argument threatens to undermine the “connectionist” orthodoxy in contemporary neuroscience, which does not seem to recognize any such mechanisms. In this paper I argue (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Varieties of difference-makers: Considerations on chirimuuta’s approach to non-causal explanation in neuroscience.Abel Wajnerman Paz - 2019 - Manuscrito 42 (1):91-119.
    Causal approaches to explanation often assume that a model explains by describing features that make a difference regarding the phenomenon. Chirimuuta claims that this idea can be also used to understand non-causal explanation in computational neuroscience. She argues that mathematical principles that figure in efficient coding explanations are non-causal difference-makers. Although these principles cannot be causally altered, efficient coding models can be used to show how would the phenomenon change if the principles were modified in counterpossible situations. The problem is (...)
    Download  
     
    Export citation  
     
    Bookmark