Switch to: References

Add citations

You must login to add citations.
  1. A marriage of Brouwer’s intuitionism and Hilbert’s finitism I: Arithmetic.Takako Nemoto & Sato Kentaro - 2022 - Journal of Symbolic Logic 87 (2):437-497.
    We investigate which part of Brouwer’s Intuitionistic Mathematics is finitistically justifiable or guaranteed in Hilbert’s Finitism, in the same way as similar investigations on Classical Mathematics (i.e., which part is equiconsistent with$\textbf {PRA}$or consistent provably in$\textbf {PRA}$) already done quite extensively in proof theory and reverse mathematics. While we already knew a contrast from the classical situation concerning the continuity principle, more contrasts turn out: we show that several principles are finitistically justifiable or guaranteed which are classically not. Among them (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • A new model construction by making a detour via intuitionistic theories IV: A closer connection between KPω and BI.Kentaro Sato - 2024 - Annals of Pure and Applied Logic 175 (7):103422.
    Download  
     
    Export citation  
     
    Bookmark  
  • Characterizations of ordinal analysis.James Walsh - 2023 - Annals of Pure and Applied Logic 174 (4):103230.
    Ordinal analysis is a research program wherein recursive ordinals are assigned to axiomatic theories. According to conventional wisdom, ordinal analysis measures the strength of theories. Yet what is the attendant notion of strength? In this paper we present abstract characterizations of ordinal analysis that address this question. -/- First, we characterize ordinal analysis as a partition of $\Sigma^1_1$-definable and $\Pi^1_1$-sound theories, namely, the partition whereby two theories are equivalent if they have the same proof-theoretic ordinal. We show that no equivalence (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Elementary inductive dichotomy: Separation of open and clopen determinacies with infinite alternatives.Kentaro Sato - 2020 - Annals of Pure and Applied Logic 171 (3):102754.
    We introduce a new axiom called inductive dichotomy, a weak variant of the axiom of inductive definition, and analyze the relationships with other variants of inductive definition and with related axioms, in the general second order framework, including second order arithmetic, second order set theory and higher order arithmetic. By applying these results to the investigations on the determinacy axioms, we show the following. (i) Clopen determinacy is consistency-wise strictly weaker than open determinacy in these frameworks, except second order arithmetic; (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A new model construction by making a detour via intuitionistic theories III: Ultrafinitistic proofs of conservations of Σ 1 1 collection. [REVIEW]Kentaro Sato - 2023 - Annals of Pure and Applied Logic 174 (3):103207.
    Download  
     
    Export citation  
     
    Bookmark   1 citation