Switch to: Citations

Add references

You must login to add references.
  1. (4 other versions)First Steps into Metapredicativity in Explicit Mathematics.Andrea Cantini - 2002 - Bulletin of Symbolic Logic 8 (4):535-536.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Aspects of Incompleteness.Per Lindström - 1999 - Studia Logica 63 (3):438-439.
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • Constructive Zermelo–Fraenkel set theory and the limited principle of omniscience.Michael Rathjen - 2014 - Annals of Pure and Applied Logic 165 (2):563-572.
    In recent years the question of whether adding the limited principle of omniscience, LPO, to constructive Zermelo–Fraenkel set theory, CZF, increases its strength has arisen several times. As the addition of excluded middle for atomic formulae to CZF results in a rather strong theory, i.e. much stronger than classical Zermelo set theory, it is not obvious that its augmentation by LPO would be proof-theoretically benign. The purpose of this paper is to show that CZF+RDC+LPO has indeed the same strength as (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On the proof-theoretic strength of monotone induction in explicit mathematics.Thomas Glaß, Michael Rathjen & Andreas Schlüter - 1997 - Annals of Pure and Applied Logic 85 (1):1-46.
    We characterize the proof-theoretic strength of systems of explicit mathematics with a general principle asserting the existence of least fixed points for monotone inductive definitions, in terms of certain systems of analysis and set theory. In the case of analysis, these are systems which contain the Σ12-axiom of choice and Π12-comprehension for formulas without set parameters. In the case of set theory, these are systems containing the Kripke-Platek axioms for a recursively inaccessible universe together with the existence of a stable (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Choice sequences: a chapter of intuitionistic mathematics.Anne Sjerp Troelstra - 1977 - Oxford [Eng.]: Clarendon Press.
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Subsystems of Second Order Arithmetic.Stephen G. Simpson - 1999 - Studia Logica 77 (1):129-129.
    Download  
     
    Export citation  
     
    Bookmark   237 citations  
  • (2 other versions)Admissible Sets and Structures. An Approach to Definability Theory.Mark Nadel - 1978 - Journal of Symbolic Logic 43 (1):139-144.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Explicit mathematics with the monotone fixed point principle. II: Models.Michael Rathjen - 1999 - Journal of Symbolic Logic 64 (2):517-550.
    This paper continues investigations of the monotone fixed point principle in the context of Feferman's explicit mathematics begun in [14]. Explicit mathematics is a versatile formal framework for representing Bishop-style constructive mathematics and generalized recursion theory. The object of investigation here is the theory of explicit mathematics augmented by the monotone fixed point principle, which asserts that any monotone operation on classifications (Feferman's notion of set) possesses a least fixed point. To be more precise, the new axiom not merely postulates (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Interpreting classical theories in constructive ones.Jeremy Avigad - 2000 - Journal of Symbolic Logic 65 (4):1785-1812.
    A number of classical theories are interpreted in analogous theories that are based on intuitionistic logic. The classical theories considered include subsystems of first- and second-order arithmetic, bounded arithmetic, and admissible set theory.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • A well-ordering proof for Feferman's theoryT 0.Gerhard Jäger - 1983 - Archive for Mathematical Logic 23 (1):65-77.
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • The Type Theoretic Interpretation of Constructive Set Theory.Peter Aczel, Angus Macintyre, Leszek Pacholski & Jeff Paris - 1984 - Journal of Symbolic Logic 49 (1):313-314.
    Download  
     
    Export citation  
     
    Bookmark   78 citations  
  • Systems of explicit mathematics with non-constructive μ-operator. Part I.Solomon Feferman & Gerhard Jäger - 1993 - Annals of Pure and Applied Logic 65 (3):243-263.
    Feferman, S. and G. Jäger, Systems of explicit mathematics with non-constructive μ-operator. Part I, Annals of Pure and Applied Logic 65 243-263. This paper is mainly concerned with the proof-theoretic analysis of systems of explicit mathematics with a non-constructive minimum operator. We start off from a basic theory BON of operators and numbers and add some principles of set and formula induction on the natural numbers as well as axioms for μ. The principal results then state: BON plus set induction (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • The strength of some Martin-Löf type theories.Edward Griffor & Michael Rathjen - 1994 - Archive for Mathematical Logic 33 (5):347-385.
    One objective of this paper is the determination of the proof-theoretic strength of Martin-Löf's type theory with a universe and the type of well-founded trees. It is shown that this type system comprehends the consistency of a rather strong classical subsystem of second order arithmetic, namely the one with Δ 2 1 comprehension and bar induction. As Martin-Löf intended to formulate a system of constructive (intuitionistic) mathematics that has a sound philosophical basis, this yields a constructive consistency proof of a (...)
    Download  
     
    Export citation  
     
    Bookmark   48 citations  
  • Admissible sets and structures: an approach to definability theory.Jon Barwise - 1975 - New York: Springer Verlag.
    Download  
     
    Export citation  
     
    Bookmark   101 citations  
  • Upper Bounds for metapredicative mahlo in explicit mathematics and admissible set theory.Gerhard Jager & Thomas Strahm - 2001 - Journal of Symbolic Logic 66 (2):935-958.
    In this article we introduce systems for metapredicative Mahlo in explicit mathematics and admissible set theory. The exact upper proof-theoretic bounds of these systems are established.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Wellordering proofs for metapredicative Mahlo.Thomas Strahm - 2002 - Journal of Symbolic Logic 67 (1):260-278.
    In this article we provide wellordering proofs for metapredicative systems of explicit mathematics and admissible set theory featuring suitable axioms about the Mahloness of the underlying universe of discourse. In particular, it is shown that in the corresponding theories EMA of explicit mathematics and KPm 0 of admissible set theory, transfinite induction along initial segments of the ordinal φω00, for φ being a ternary Veblen function, is derivable. This reveals that the upper bounds given for these two systems in the (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Realizability.A. S. Troelstra - 2000 - Bulletin of Symbolic Logic 6 (4):470-471.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • (1 other version)Foundations of Constructive Mathematics. Metamathematical Studies.Michael J. Beeson - 1987 - Journal of Symbolic Logic 52 (1):278-279.
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Reflections on reflections in explicit mathematics.Gerhard Jäger & Thomas Strahm - 2005 - Annals of Pure and Applied Logic 136 (1-2):116-133.
    We give a broad discussion of reflection principles in explicit mathematics, thereby addressing various kinds of universe existence principles. The proof-theoretic strength of the relevant systems of explicit mathematics is couched in terms of suitable extensions of Kripke–Platek set theory.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Theories for admissible sets: a unifying approach to proof theory.Gerhard Jäger - 1986 - Napoli: Bibliopolis.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • (1 other version)Explicit mathematics and operational set theory: Some ontological comparisons.Gerhard Jäger & Rico Zumbrunnen - 2014 - Bulletin of Symbolic Logic 20 (3):275-292.
    We discuss several ontological properties of explicit mathematics and operational set theory: global choice, decidable classes, totality and extensionality of operations, function spaces, class and set formation via formulas that contain the definedness predicate and applications.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A Language and Axioms for Explicit Mathematics.Solomon Feferman, J. N. Crossley, Maurice Boffa, Dirk van Dalen & Kenneth Mcaloon - 1984 - Journal of Symbolic Logic 49 (1):308-311.
    Download  
     
    Export citation  
     
    Bookmark   66 citations  
  • Universes in explicit mathematics.Gerhard Jäger, Reinhard Kahle & Thomas Studer - 2001 - Annals of Pure and Applied Logic 109 (3):141-162.
    This paper deals with universes in explicit mathematics. After introducing some basic definitions, the limit axiom and possible ordering principles for universes are discussed. Later, we turn to least universes, strictness and name induction. Special emphasis is put on theories for explicit mathematics with universes which are proof-theoretically equivalent to Feferman's.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Extending the system T0 of explicit mathematics: the limit and Mahlo axioms.Gerhard Jäger & Thomas Studer - 2002 - Annals of Pure and Applied Logic 114 (1-3):79-101.
    In this paper we discuss extensions of Feferman's theory T 0 for explicit mathematics by the so-called limit and Mahlo axioms and present a novel approach to constructing natural recursion-theoretic models for systems of explicit mathematics which is based on nonmonotone inductive definitions.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Kripke-Platek Set Theory and the Anti-Foundation Axiom.Michael Rathjen - 2001 - Mathematical Logic Quarterly 47 (4):435-440.
    The paper investigates the strength of the Anti-Foundation Axiom, AFA, on the basis of Kripke-Platek set theory without Foundation. It is shown that the addition of AFA considerably increases the proof theoretic strength.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Suslin operator in applicative theories: Its proof-theoretic analysis via ordinal theories.Gerhard Jäger & Dieter Probst - 2011 - Annals of Pure and Applied Logic 162 (8):647-660.
    The Suslin operator is a type-2 functional testing for the well-foundedness of binary relations on the natural numbers. In the context of applicative theories, its proof-theoretic strength has been analyzed in Jäger and Strahm [18]. This article provides a more direct approach to the computation of the upper bounds in question. Several theories featuring the Suslin operator are embedded into ordinal theories tailored for dealing with non-monotone inductive definitions that enable a smooth definition of the application relation.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Explicit mathematics with the monotone fixed point principle.Michael Rathjen - 1998 - Journal of Symbolic Logic 63 (2):509-542.
    The context for this paper is Feferman's theory of explicit mathematics, a formal framework serving many purposes. It is suitable for representing Bishop-style constructive mathematics as well as generalized recursion, including direct expression of structural concepts which admit self-application. The object of investigation here is the theory of explicit mathematics augmented by the monotone fixed point principle, which asserts that any monotone operation on classifications (Feferman's notion of set) possesses a least fixed point. To be more precise, the new axiom (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Subsystems of Second Order Arithmetic.Stephen George Simpson - 1998 - Springer Verlag.
    Stephen George Simpson. with definition 1.2.3 and the discussion following it. For example, taking 90(n) to be the formula n §E Y, we have an instance of comprehension, VYEIXVn(n€X<—>n¢Y), asserting that for any given set Y there exists a ...
    Download  
     
    Export citation  
     
    Bookmark   131 citations  
  • Non-Well-Founded Sets.Peter Aczel - 1988 - Palo Alto, CA, USA: Csli Lecture Notes.
    Download  
     
    Export citation  
     
    Bookmark   140 citations  
  • Monotone inductive definitions in explicit mathematics.Michael Rathjen - 1996 - Journal of Symbolic Logic 61 (1):125-146.
    The context for this paper is Feferman's theory of explicit mathematics, T 0 . We address a problem that was posed in [6]. Let MID be the principle stating that any monotone operation on classifications has a least fixed point. The main objective of this paper is to show that T 0 + MID, when based on classical logic, also proves the existence of non-monotone inductive definitions that arise from arbitrary extensional operations on classifications. From the latter we deduce that (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Monotone inductive definitions in a constructive theory of functions and classes.Shuzo Takahashi - 1989 - Annals of Pure and Applied Logic 42 (3):255-297.
    In this thesis, we study the least fixed point principle in a constructive setting. A constructive theory of functions and sets has been developed by Feferman. This theory deals both with sets and with functions over sets as independent notions. In the language of Feferman's theory, we are able to formulate the least fixed point principle for monotone inductive definitions as: every operation on classes to classes which satisfies the monotonicity condition has a least fixed point. This is called the (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • On the intuitionistic strength of monotone inductive definitions.Sergei Tupailo - 2004 - Journal of Symbolic Logic 69 (3):790-798.
    We prove here that the intuitionistic theory $T_{0}\upharpoonright + UMID_{N}$ , or even $EEJ\upharpoonright + UMID_{N}$ , of Explicit Mathematics has the strength of $\prod_{2}^{1} - CA_{0}$ . In Section I we give a double-negation translation for the classical second-order $\mu-calculus$ , which was shown in [ $M\ddot{o}02$ ] to have the strength of $\prod_{2}^{1}-CA_{0}$ . In Section 2 we interpret the intuitionistic $\mu-calculus$ in the theory $EETJ\upharpoonright + UMID_{N}$ . The question about the strength of monotone inductive definitions in (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Realization of constructive set theory into explicit mathematics: a lower bound for impredicative Mahlo universe.Sergei Tupailo - 2003 - Annals of Pure and Applied Logic 120 (1-3):165-196.
    We define a realizability interpretation of Aczel's Constructive Set Theory CZF into Explicit Mathematics. The final results are that CZF extended by Mahlo principles is realizable in corresponding extensions of T 0 , thus providing relative lower bounds for the proof-theoretic strength of the latter.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Extensional realizability.Jaap van Oosten - 1997 - Annals of Pure and Applied Logic 84 (3):317-349.
    Two straightforward “extensionalisations” of Kleene's realizability are considered; denoted re and e. It is shown that these realizabilities are not equivalent. While the re-notion is a subset of Kleene's realizability, the e-notion is not. The problem of an axiomatization of e-realizability is attacked and one arrives at an axiomatization over a conservative extension of arithmetic, in a language with variables for finite sets. A derived rule for arithmetic is obtained by the use of a q-variant of e-realizability; this rule subsumes (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • A new model construction by making a detour via intuitionistic theories I: Operational set theory without choice is Π 1 -equivalent to KP.Kentaro Sato & Rico Zumbrunnen - 2015 - Annals of Pure and Applied Logic 166 (2):121-186.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (1 other version)Explicit mathematics and operational set theory: Some ontological comparisons.Gerhard Jäger & Rico Zumbrunnen - 2017 - Association for Symbolic Logic: The Bulletin of Symbolic Logic.
    We discuss several ontological properties of explicit mathematics and operational set theory: global choice, decidable classes, totality and extensionality of operations, function spaces, class and set formation via formulas that contain the definedness predicate and applications.
    Download  
     
    Export citation  
     
    Bookmark   3 citations