Switch to: References

Add citations

You must login to add citations.
  1. Logical Squares for Classical Logic Sentences.Urszula Wybraniec-Skardowska - 2016 - Logica Universalis 10 (2-3):293-312.
    In this paper, with reference to relationships of the traditional square of opposition, we establish all the relations of the square of opposition between complex sentences built from the 16 binary and four unary propositional connectives of the classical propositional calculus. We illustrate them by means of many squares of opposition and, corresponding to them—octagons, hexagons or other geometrical objects.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Was Lewis Carroll an Amazing Oppositional Geometer?Alessio Moretti - 2014 - History and Philosophy of Logic 35 (4):383-409.
    Some Carrollian posthumous manuscripts reveal, in addition to his famous ‘logical diagrams’, two mysterious ‘logical charts’. The first chart, a strange network making out of fourteen logical sentences a large 2D ‘triangle’ containing three smaller ones, has been shown equivalent—modulo the rediscovery of a fourth smaller triangle implicit in Carroll's global picture—to a 3D tetrahedron, the four triangular faces of which are the 3+1 Carrollian complex triangles. As it happens, such an until now very mysterious 3D logical shape—slightly deformed—has been (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Logical Geometries and Information in the Square of Oppositions.Hans Smessaert & Lorenz Demey - 2014 - Journal of Logic, Language and Information 23 (4):527-565.
    The Aristotelian square of oppositions is a well-known diagram in logic and linguistics. In recent years, several extensions of the square have been discovered. However, these extensions have failed to become as widely known as the square. In this paper we argue that there is indeed a fundamental difference between the square and its extensions, viz., a difference in informativity. To do this, we distinguish between concrete Aristotelian diagrams and, on a more abstract level, the Aristotelian geometry. We then introduce (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Why the Logical Hexagon?Alessio Moretti - 2012 - Logica Universalis 6 (1-2):69-107.
    The logical hexagon (or hexagon of opposition) is a strange, yet beautiful, highly symmetrical mathematical figure, mysteriously intertwining fundamental logical and geometrical features. It was discovered more or less at the same time (i.e. around 1950), independently, by a few scholars. It is the successor of an equally strange (but mathematically less impressive) structure, the “logical square” (or “square of opposition”), of which it is a much more general and powerful “relative”. The discovery of the former did not raise interest, (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Metalogical Decorations of Logical Diagrams.Lorenz Demey & Hans Smessaert - 2016 - Logica Universalis 10 (2-3):233-292.
    In recent years, a number of authors have started studying Aristotelian diagrams containing metalogical notions, such as tautology, contradiction, satisfiability, contingency, strong and weak interpretations of contrariety, etc. The present paper is a contribution to this line of research, and its main aims are both to extend and to deepen our understanding of metalogical diagrams. As for extensions, we not only study several metalogical decorations of larger and less widely known Aristotelian diagrams, but also consider metalogical decorations of another type (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • La structure tétrahexaédrique du système complet des propositions catégoriques.Pierre Sauriol - 1976 - Dialogue 15 (3):479-501.
    Download  
     
    Export citation  
     
    Bookmark   2 citations