Switch to: References

Add citations

You must login to add citations.
  1. Evolution of peroxisomes illustrates symbiogenesis.Dave Speijer - 2017 - Bioessays 39 (9):1700050.
    Recently, the group of McBride reported a stunning observation regarding peroxisome biogenesis: newly born peroxisomes are hybrids of mitochondrial and ER-derived pre-peroxisomes. What was stunning? Studies performed with the yeast Saccharomyces cerevisiae had convincingly shown that peroxisomes are ER-derived, without indications for mitochondrial involvement. However, the recent finding using fibroblasts dovetails nicely with a mechanism inferred to be driving the eukaryotic invention of peroxisomes: reduction of mitochondrial reactive oxygen species generation associated with fatty acid oxidation. This not only explains the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Birth of the eukaryotes by a set of reactive innovations: New insights force us to relinquish gradual models.Dave Speijer - 2015 - Bioessays 37 (12):1268-1276.
    Of two contending models for eukaryotic evolution the “archezoan“ has an amitochondriate eukaryote take up an endosymbiont, while “symbiogenesis“ states that an Archaeon became a eukaryote as the result of this uptake. If so, organelle formation resulting from new engulfments is simplified by the primordial symbiogenesis, and less informative regarding the bacterium‐to‐mitochondrion conversion. Gradualist archezoan visions still permeate evolutionary thinking, but are much less likely than symbiogenesis. Genuine amitochondriate eukaryotes have never been found and rapid, explosive adaptive periods characteristic of (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • How the mitochondrion was shaped by radical differences in substrates.Dave Speijer - 2014 - Bioessays 36 (7):634-643.
    As free‐living organisms, alpha‐proteobacteria produce reactive oxygen species (ROS) that diffuse into the surroundings; once constrained inside the archaeal ancestor of eukaryotes, however, ROS production presented evolutionary pressures – especially because the alpha‐proteobacterial symbiont made more ROS, from a variety of substrates. I previously proposed that ratios of electrons coming from FADH2 and NADH (F/N ratios) correlate with ROS production levels during respiration, glucose breakdown having a much lower F/N ratio than longer fatty acid (FA) breakdown. Evidently, higher endogenous ROS (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations