Switch to: References

Add citations

You must login to add citations.
  1. Felix Klein’s projective representations of the groups $$S6$$ and $$A7$$.Henning Heller - 2022 - Archive for History of Exact Sciences 76 (5):431-470.
    This paper addresses an article by Felix Klein of 1886, in which he generalized his theory of polynomial equations of degree 5—comprehensively discussed in his Lectures on the Icosahedron two years earlier—to equations of degree 6 and 7. To do so, Klein used results previously established in line geometry. I review Klein’s 1886 article, its diverse mathematical background, and its place within the broader history of mathematics. I argue that the program advanced by this article, although historically overlooked due to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the creative role of axiomatics. The discovery of lattices by Schröder, Dedekind, Birkhoff, and others.Dirk Schlimm - 2011 - Synthese 183 (1):47-68.
    Three different ways in which systems of axioms can contribute to the discovery of new notions are presented and they are illustrated by the various ways in which lattices have been introduced in mathematics by Schröder et al. These historical episodes reveal that the axiomatic method is not only a way of systematizing our knowledge, but that it can also be used as a fruitful tool for discovering and introducing new mathematical notions. Looked at it from this perspective, the creative (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • (1 other version)Geometry and Measurement in Otto Hölder’s Epistemology.Paola Cantu - 2012 - Philosophia Scientiae 17 (1):131-164.
    L’article a pour but d’analyser la conception de la géométrie et de la mesure présentée dans Intuition et Raisonnement [Hölder 1900], « Les axiomes de la grandeur et la théorie de la mensuration » [Hölder 1901] et La Méthode mathématique [Hölder 1924]. L’article examine les relations entre a) la démarcation introduite par Hölder entre géométrie et arithmétique à partir de la notion de ‘concept donné’, b) sa position philosophique par rapport à l’apriorisme kantien et à l’empirisme et c) le choix (...)
    Download  
     
    Export citation  
     
    Bookmark