Switch to: References

Add citations

You must login to add citations.
  1. Reliability of mathematical inference.Jeremy Avigad - 2020 - Synthese 198 (8):7377-7399.
    Of all the demands that mathematics imposes on its practitioners, one of the most fundamental is that proofs ought to be correct. It has been common since the turn of the twentieth century to take correctness to be underwritten by the existence of formal derivations in a suitable axiomatic foundation, but then it is hard to see how this normative standard can be met, given the differences between informal proofs and formal derivations, and given the inherent fragility and complexity of (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • ‘Nobody could possibly misunderstand what a group is’: a study in early twentieth-century group axiomatics.Christopher D. Hollings - 2017 - Archive for History of Exact Sciences 71 (5):409-481.
    In the early years of the twentieth century, the so-called ‘postulate analysis’—the study of systems of axioms for mathematical objects for their own sake—was regarded by some as a vital part of the efforts to understand those objects. I consider the place of postulate analysis within early twentieth-century mathematics by focusing on the example of a group: I outline the axiomatic studies to which groups were subjected at this time and consider the changing attitudes towards such investigations.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Extended mathematical cognition: external representations with non-derived content.Karina Vold & Dirk Schlimm - 2020 - Synthese 197 (9):3757-3777.
    Vehicle externalism maintains that the vehicles of our mental representations can be located outside of the head, that is, they need not be instantiated by neurons located inside the brain of the cogniser. But some disagree, insisting that ‘non-derived’, or ‘original’, content is the mark of the cognitive and that only biologically instantiated representational vehicles can have non-derived content, while the contents of all extra-neural representational vehicles are derived and thus lie outside the scope of the cognitive. In this paper (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Dedekind’s Map-theoretic Period.José Ferreirós - 2017 - Philosophia Mathematica 25 (3):318–340.
    In 1887–1894, Richard Dedekind explored a number of ideas within the project of placing mappings at the very center of pure mathematics. We review two such initiatives: the introduction in 1894 of groups into Galois theory intrinsically via field automorphisms, and a new attempt to define the continuum via maps from ℕ to ℕ in 1891. These represented the culmination of Dedekind’s efforts to reconceive pure mathematics within a theory of sets and maps and throw new light onto the nature (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Axioms in Mathematical Practice.Dirk Schlimm - 2013 - Philosophia Mathematica 21 (1):37-92.
    On the basis of a wide range of historical examples various features of axioms are discussed in relation to their use in mathematical practice. A very general framework for this discussion is provided, and it is argued that axioms can play many roles in mathematics and that viewing them as self-evident truths does not do justice to the ways in which mathematicians employ axioms. Possible origins of axioms and criteria for choosing axioms are also examined. The distinctions introduced aim at (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Two Ways of Analogy: Extending the Study of Analogies to Mathematical Domains.Dirk Schlimm - 2008 - Philosophy of Science 75 (2):178-200.
    The structure-mapping theory has become the de-facto standard account of analogies in cognitive science and philosophy of science. In this paper I propose a distinction between two kinds of domains and I show how the account of analogies based on structure-preserving mappings fails in certain (object-rich) domains, which are very common in mathematics, and how the axiomatic approach to analogies, which is based on a common linguistic description of the analogs in terms of laws or axioms, can be used successfully (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Dedekind and Hilbert on the foundations of the deductive sciences.Ansten Klev - 2011 - Review of Symbolic Logic 4 (4):645-681.
    We offer an interpretation of the words and works of Richard Dedekind and the David Hilbert of around 1900 on which they are held to entertain diverging views on the structure of a deductive science. Firstly, it is argued that Dedekind sees the beginnings of a science in concepts, whereas Hilbert sees such beginnings in axioms. Secondly, it is argued that for Dedekind, the primitive terms of a science are substantive terms whose sense is to be conveyed by elucidation, whereas (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Towards a theory of abduction based on conditionals.Rolf Pfister - 2022 - Synthese 200 (3):1-30.
    Abduction is considered the most powerful, but also the most controversially discussed type of inference. Based on an analysis of Peirce’s retroduction, Lipton’s Inference to the Best Explanation and other theories, a new theory of abduction is proposed. It considers abduction not as intrinsically explanatory but as intrinsically conditional: for a given fact, abduction allows one to infer a fact that implies it. There are three types of abduction: Selective abduction selects an already known conditional whose consequent is the given (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Dedekind's Abstract Concepts: Models and Mappings.Wilfried Sieg & Dirk Schlimm - 2014 - Philosophia Mathematica (3):nku021.
    Dedekind's mathematical work is integral to the transformation of mathematics in the nineteenth century and crucial for the emergence of structuralist mathematics in the twentieth century. We investigate the essential components of what Emmy Noether called, his ‘axiomatic standpoint’: abstract concepts, models, and mappings.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Abduction and styles of scientific thinking.Mariana Vitti Rodrigues & Claus Emmeche - 2019 - Synthese 198 (2):1397-1425.
    In philosophy of science, the literature on abduction and the literature on styles of thinking have existed almost totally in parallel. Here, for the first time, we bring them together and explore their mutual relevance. What is the consequence of the existence of several styles of scientific thinking for abduction? Can abduction, as a general creative mode of inference, have distinct characteristic forms within each style? To investigate this, firstly, we present the concept of abduction; secondly we analyze what is (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations