Switch to: References

Add citations

You must login to add citations.
  1. On the no-counterexample interpretation.Ulrich Kohlenbach - 1999 - Journal of Symbolic Logic 64 (4):1491-1511.
    In [15], [16] G. Kreisel introduced the no-counterexample interpretation (n.c.i.) of Peano arithmetic. In particular he proved, using a complicated ε-substitution method (due to W. Ackermann), that for every theorem A (A prenex) of first-order Peano arithmetic PA one can find ordinal recursive functionals Φ A of order type 0 which realize the Herbrand normal form A H of A. Subsequently more perspicuous proofs of this fact via functional interpretation (combined with normalization) and cut-elimination were found. These proofs however do (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • A constructive analysis of learning in Peano Arithmetic.Federico Aschieri - 2012 - Annals of Pure and Applied Logic 163 (11):1448-1470.
    We give a constructive analysis of learning as it arises in various computational interpretations of classical Peano Arithmetic, such as Aschieri and Berardi learning based realizability, Avigad’s update procedures and epsilon substitution method. In particular, we show how to compute in Gödel’s system T upper bounds on the length of learning processes, which are themselves represented in T through learning based realizability. The result is achieved by the introduction of a new non standard model of Gödel’s T, whose new basic (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Gödel's functional interpretation and its use in current mathematics.Ulrich Kohlenbach - 2008 - Dialectica 62 (2):223–267.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On Spector's bar recursion.Paulo Oliva & Thomas Powell - 2012 - Mathematical Logic Quarterly 58 (4-5):356-265.
    We show that Spector's “restricted” form of bar recursion is sufficient (over system T) to define Spector's search functional. This new result is then used to show that Spector's restricted form of bar recursion is in fact as general as the supposedly more general form of bar recursion. Given that these two forms of bar recursion correspond to the (explicitly controlled) iterated products of selection function and quantifiers, it follows that this iterated product of selection functions is T‐equivalent to the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A direct proof of schwichtenberg’s bar recursion closure theorem.Paulo Oliva & Silvia Steila - 2018 - Journal of Symbolic Logic 83 (1):70-83.
    Schwichtenberg showed that the System T definable functionals are closed under a rule-like version Spector’s bar recursion of lowest type levels 0 and 1. More precisely, if the functional Y which controls the stopping condition of Spector’s bar recursor is T-definable, then the corresponding bar recursion of type levels 0 and 1 is already T-definable. Schwichtenberg’s original proof, however, relies on a detour through Tait’s infinitary terms and the correspondence between ordinal recursion for α < ε₀ and primitive recursion over (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Representing definable functions of HA by neighbourhood functions.Tatsuji Kawai - 2019 - Annals of Pure and Applied Logic 170 (8):891-909.
    Download  
     
    Export citation  
     
    Bookmark