Switch to: References

Add citations

You must login to add citations.
  1. Nonstandard definability.Stuart T. Smith - 1989 - Annals of Pure and Applied Logic 42 (1):21-43.
    We investigate the notion of definability with respect to a full satisfaction class σ for a model M of Peano arithmetic. It is shown that the σ-definable subsets of M always include a class which provides a satisfaction definition for standard formulas. Such a class is necessarily proper, therefore there exist recursively saturated models with no full satisfaction classes. Nonstandard extensions of overspill and recursive saturation are utilized in developing a criterion for nonstandard definability. Finally, these techniques yield some information (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Cardinality without Enumeration.Athanassios Tzouvaras - 2005 - Studia Logica 80 (1):121-141.
    We show that the notion of cardinality of a set is independent from that of wellordering, and that reasonable total notions of cardinality exist in every model of ZF where the axiom of choice fails. Such notions are either definable in a simple and natural way, or non-definable, produced by forcing. Analogous cardinality notions exist in nonstandard models of arithmetic admitting nontrivial automorphisms. Certain motivating phenomena from quantum mechanics are also discussed in the Appendix.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Totally non‐immune sets.Athanassios Tzouvaras - 2015 - Mathematical Logic Quarterly 61 (1-2):103-116.
    Let be a countable first‐order language and be an ‐structure. “Definable set” means a subset of M which is ‐definable in with parameters. A set is said to be immune if it is infinite and does not contain any infinite definable subset. X is said to be partially immune if for some definable A, is immune. X is said to be totally non‐immune if for every definable A, and are not immune. Clearly every definable set is totally non‐immune. Here we (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Proper and piecewise proper families of reals.Victoria Gitman - 2009 - Mathematical Logic Quarterly 55 (5):542-550.
    I introduced the notions of proper and piecewise proper families of reals to make progress on a long standing open question in the field of models of Peano Arithmetic [5]. A family of reals is proper if it is arithmetically closed and its quotient Boolean algebra modulo the ideal of finite sets is a proper poset. A family of reals is piecewise proper if it is the union of a chain of proper families each of whom has size ≤ ω1.Here, (...)
    Download  
     
    Export citation  
     
    Bookmark