Switch to: References

Add citations

You must login to add citations.
  1. Conservation, inertia, and spacetime geometry.James Owen Weatherall - 2017 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 67:144-159.
    As Harvey Brown emphasizes in his book Physical Relativity, inertial motion in general relativity is best understood as a theorem, and not a postulate. Here I discuss the status of the "conservation condition", which states that the energy-momentum tensor associated with non-interacting matter is covariantly divergence-free, in connection with such theorems. I argue that the conservation condition is best understood as a consequence of the differential equations governing the evolution of matter in general relativity and many other theories. I conclude (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Quantum gravity at low energies.David Wallace - 2022 - Studies in History and Philosophy of Science Part A 94 (C):31-46.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Trans-Planckian philosophy of cosmology.Mike D. Schneider - 2021 - Studies in History and Philosophy of Science Part A 90 (C):184-193.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Creativity in the Social Epistemology of Science.Mike D. Schneider - 2021 - Philosophy of Science 88 (5):882-893.
    Currie (2019) has introduced a novel account of creativity within the social epistemology of science. The account is intended to capture how conservatism can be detrimental to the health of inquiry within certain scientific communities, given the aims of research there. I argue that recent remarks by Rovelli (2018) put pressure on the applicability of the account. Altogether, it seems we do not yet well understand the relationship between creativity, conservatism, and the health of inquiry in science.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Betting on Future Physics.Mike D. Schneider - 2022 - British Journal for the Philosophy of Science 73 (1):161-183.
    The ‘cosmological constant problem’ has historically been understood as describing a conflict between cosmological observations in the framework of general relativity and theoretical predictions from quantum field theory, which a future theory of quantum gravity ought to resolve. I argue that this view of the CCP is best understood in terms of a bet about future physics made on the basis of particular interpretational choices in GR and QFT, respectively. Crucially, each of these choices must be taken as itself grounded (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A (Strictly) Contemporary Perspective on Trans-Planckian Censorship.Mike D. Schneider - 2022 - Foundations of Physics 52 (4):1-21.
    I critically discuss a controversial ‘trans-Planckian censorship’ conjecture, which has recently been introduced to researchers working at the intersection of fundamental physics and cosmology. My focus explicitly avoids any appeals to contingent research within string theory or regarding the more general gravitational ‘swampland’. Rather, I concern myself with the conjecture’s foundations in our current, well-trodden physics of quantized fields, spacetime, and gravity. In doing so, I locate what exactly within trans-Planckian censorship amounts to a departure from current physics—identifying what is, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Renormalization group methods and the epistemology of effective field theories.Adam Koberinski & Doreen Fraser - 2023 - Studies in History and Philosophy of Science Part A 98 (C):14-28.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Regularizing (Away) Vacuum Energy.Adam Koberinski - 2021 - Foundations of Physics 51 (1):1-22.
    In this paper I formulate Minimal Requirements for Candidate Predictions in quantum field theories, inspired by viewing the standard model as an effective field theory. I then survey standard effective field theory regularization procedures, to see if the vacuum expectation value of energy density ) is a quantity that meets these requirements. The verdict is negative, leading to the conclusion that \ is not a physically significant quantity in the standard model. Rigorous extensions of flat space quantum field theory eliminate (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations