Switch to: Citations

Add references

You must login to add references.
  1. Philosophy of Cosmology.Chris Smeenk - 2013 - In Robert Batterman (ed.), The Oxford Handbook of Philosophy of Physics. Oxford University Press USA. pp. 607-652.
    This chapter addresses philosophical questions raised in contemporary work on cosmology. It provides an overview of the Standard Model for cosmology and argues that its deficiency in addressing theories regarding the very early universe can be resolved by introducing a dynamical phase of evolution that eliminates the need for a special initial state. The chapter also discusses recent hypotheses about dark matter and energy, issues that it relates to philosophical debates about underdetermination.
    Download  
     
    Export citation  
     
    Bookmark   48 citations  
  • (1 other version)The quantum vacuum and the cosmological constant problem.Svend E. Rugh & Henrik Zinkernagel - 2002 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 33 (4):663-705.
    The cosmological constant problem arises at the intersection between general relativity and quantum field theory, and is regarded as a fundamental problem in modern physics. In this paper we describe the historical and conceptual origin of the cosmological constant problem which is intimately connected to the vacuum concept in quantum field theory. We critically discuss how the problem rests on the notion of physically real vacuum energy, and which relations between general relativity and quantum field theory are assumed in order (...)
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • On (Some) Explanations in Physics.James Owen Weatherall - 2011 - Philosophy of Science 78 (3):421-447.
    I offer an explanation of why inertial and gravitational mass are equal in Newtonian gravitation. I then argue that this is an example of a kind of explanation that is not captured by standard philosophical accounts of scientific explanation. Moreover, this form of explanation is particularly important, at least in physics, because demands for this kind of explanation are used to motivate and shape research into the next generation of physical theories. I suggest that explanations of the sort I describe (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Physics Needs Philosophy. Philosophy Needs Physics.Carlo Rovelli - 2018 - Foundations of Physics 48 (5):481-491.
    Contrary to claims about the irrelevance of philosophy for science, I argue that philosophy has had, and still has, far more influence on physics than is commonly assumed. I maintain that the current anti-philosophical ideology has had damaging effects on the fertility of science. I also suggest that recent important empirical results, such as the detection of the Higgs particle and gravitational waves, and the failure to detect supersymmetry where many expected to find it, question the validity of certain philosophical (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • A Simple Proof of the Uniqueness of the Einstein Field Equation in All Dimensions.Erik Curiel - unknown
    The standard argument for the uniqueness of the Einstein field equation is based on Lovelock's Theorem, the relevant statement of which is restricted to four dimensions. I prove a theorem similar to Lovelock's, with a physically modified assumption: that the geometric object representing curvature in the Einstein field equation ought to have the physical dimension of stress-energy. The theorem is stronger than Lovelock's in two ways: it holds in all dimensions, and so supports a generalized argument for uniqueness; it does (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Measure, Topology and Probabilistic Reasoning in Cosmology.Erik Curiel - unknown
    I explain the difficulty of making various concepts of and relating to probability precise, rigorous and physically significant when attempting to apply them in reasoning about objects living in infinite-dimensional spaces, working through many examples from cosmology. I focus on the relation of topological to measure-theoretic notions of and relating to probability, how they diverge in unpleasant ways in the infinite-dimensional case, and are even difficult to work with on their own. Even in cases where an appropriate family of spacetimes (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • (1 other version)The quantum vacuum and the cosmological constant problem.Svend E. Rugh & Henrik Zinkernagel - 2001 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 33 (4):663-705.
    The cosmological constant problem arises at the intersection between general relativity and quantum field theory, and is regarded as a fundamental problem in modern physics. In this paper we describe the historical and conceptual origin of the cosmological constant problem which is intimately connected to the vacuum concept in quantum field theory. We critically discuss how the problem rests on the notion of physically real vacuum energy, and which relations between general relativity and quantum field theory are assumed in order (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • (3 other versions)Progress and Its Problems: Towards a Theory of Scientific Growth.T. S. Weston & Larry Laudan - 1978 - Philosophical Review 87 (4):614.
    Download  
     
    Export citation  
     
    Bookmark   159 citations  
  • Lambda: The Constant That Refuses to Die.John Earman - 2001 - Archive for History of Exact Sciences 55 (3):189-220.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Preludes to dark energy: zero-point energy and vacuum speculations.Helge Kragh - 2012 - Archive for History of Exact Sciences 66 (3):199-240.
    According to modern physics and cosmology, the universe expands at an increasing rate as the result of a “dark energy” that characterizes empty space. Although dark energy is a modern concept, some elements in it can be traced back to the early part of the twentieth century. I examine the origin of the idea of zero-point energy, and in particular how it appeared in a cosmological context in a hypothesis proposed by Walther Nernst in 1916. The hypothesis of a zero-point (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation