Switch to: References

Add citations

You must login to add citations.
  1. On sequence-conclusion natural deduction systems.Branislav R. Boričić - 1985 - Journal of Philosophical Logic 14 (4):359 - 377.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Non-transitive Correspondence Analysis.Yaroslav Petrukhin & Vasily Shangin - 2023 - Journal of Logic, Language and Information 32 (2):247-273.
    The paper’s novelty is in combining two comparatively new fields of research: non-transitive logic and the proof method of correspondence analysis. To be more detailed, in this paper the latter is adapted to Weir’s non-transitive trivalent logic \({\mathbf{NC}}_{\mathbf{3}}\). As a result, for each binary extension of \({\mathbf{NC}}_{\mathbf{3}}\), we present a sound and complete Lemmon-style natural deduction system. Last, but not least, we stress the fact that Avron and his co-authors’ general method of obtaining _n_-sequent proof systems for any _n_-valent logic (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Functional Completeness in CPL via Correspondence Analysis.Dorota Leszczyńska-Jasion, Yaroslav Petrukhin, Vasilyi Shangin & Marcin Jukiewicz - 2019 - Bulletin of the Section of Logic 48 (1).
    Kooi and Tamminga's correspondence analysis is a technique for designing proof systems, mostly, natural deduction and sequent systems. In this paper it is used to generate sequent calculi with invertible rules, whose only branching rule is the rule of cut. The calculi pertain to classical propositional logic and any of its fragments that may be obtained from adding a set of rules characterizing a two-argument Boolean function to the negation fragment of classical propositional logic. The properties of soundness and completeness (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Correspondence Analysis for Some Fragments of Classical Propositional Logic.Yaroslav Petrukhin & Vasilyi Shangin - 2021 - Logica Universalis 15 (1):67-85.
    In the paper, we apply Kooi and Tamminga’s correspondence analysis to some conventional and functionally incomplete fragments of classical propositional logic. In particular, the paper deals with the implication, disjunction, and negation fragments. Additionally, we consider an application of correspondence analysis to some connectiveless fragment with certain basic properties of the logical consequence relation only. As a result of the application, one obtains a sound and complete natural deduction system for any binary extension of each fragment in question. With the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Subformula Property In Classical Natural Deduction Established Constructively.Tor Sandqvist - 2012 - Review of Symbolic Logic 5 (4):710-719.
    A constructive proof is provided for the claim that classical first-order logic admits of a natural deduction formulation featuring the subformula property.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Truth‐value relations and logical relations.Lloyd Humberstone - 2023 - Theoria 89 (1):124-147.
    After some generalities about connections between functions and relations in Sections 1 and 2 recalls the possibility of taking the semantic values of ‐ary Boolean connectives as ‐ary relations among truth‐values rather than as ‐ary truth functions. Section 3, the bulk of the paper, looks at correlates of these truth‐value relations as applied to formulas, and explores in a preliminary way how their properties are related to the properties of “logical relations” among formulas such as equivalence, implication (entailment) and contrariety (...)
    Download  
     
    Export citation  
     
    Bookmark