Switch to: References

Add citations

You must login to add citations.
  1. Trajectories and causal phase-space approach to relativistic quantum mechanics.P. R. Holland, A. Kyprianidis & J. P. Vigier - 1987 - Foundations of Physics 17 (5):531-548.
    We analyze phase-space approaches to relativistic quantum mechanics from the viewpoint of the causal interpretation. In particular, we discuss the canonical phase space associated with stochastic quantization, its relation to Hilbert space, and the Wigner-Moyal formalism. We then consider the nature of Feynman paths, and the problem of nonlocality, and conclude that a perfectly consistent relativistically covariant interpretation of quantum mechanics which retains the notion of particle trajectory is possible.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Proposed Experiments to Clarify the Real Nature of the Quantum Waves.R. N. Moreira, M. Gatta, P. Castro & J. R. Croca - 2022 - Foundations of Physics 53 (1):1-17.
    The nature of quantum waves, whether they are real physical waves or, on the contrary, mere probability waves, has been a very controversial theme since the beginning of quantum theory. Here we present some possible experiments that may clarify the problem.
    Download  
     
    Export citation  
     
    Bookmark  
  • On the Physical Reality of Quantum Waves.Gennaro Auletta & Gino Tarozzi - 2004 - Foundations of Physics 34 (11):1675-1694.
    The main interpretations of the quantum-mechanical wave function are presented emphasizing how they can be divided into two ensembles: The ones that deny and the other ones that attribute a form of reality to quantum waves. It is also shown why these waves cannot be classical and must be submitted to the restriction of the complementarity principle. Applying the concept of smooth complementarity, it is shown that there can be no reason to attribute reality only to the events and not (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Statistical VS Wave Realism in the Foundations of Quantum Mechanics.Claudio Calosi, Vincenzo Fano, Pierluigi Graziani & Gino Tarozzi - unknown
    Different realistic attitudes towards wavefunctions and quantum states are as old as quantum theory itself. Recently Pusey, Barret and Rudolph on the one hand, and Auletta and Tarozzi on the other, have proposed new interesting arguments in favor of a broad realistic interpretation of quantum mechanics that can be considered the modern heir to some views held by the fathers of quantum theory. In this paper we give a new and detailed presentation of such arguments, propose a new taxonomy of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Photon wave-particle duality and virtual electromagnetic waves.C. Meis - 1997 - Foundations of Physics 27 (6):865-873.
    The question of the relation between the amplitude of the photon vector potential and its angular frequency is analyzed. The analogy between the relativistic quantum mechanical equations for a massles particle and those governing the photon vector potential appears clearly. Finally, the virtual electromagnetic waves associated with the photon and predicted by de Broglie, Bohr, and other appear naturally as a result of the photon vector potential quantification.
    Download  
     
    Export citation  
     
    Bookmark  
  • Compatible statistical interpretation of a wave packet.Mirjana Božić & Zvonko Marić - 1995 - Foundations of Physics 25 (1):159-173.
    A compatible statistical interpretation of a wave packet is proposed. De Broglian probabilities which unite wave and particle features of quantons are evaluated for free wave packets and Jor a superposition of wave packets. The obtained expressions provide a very plausible and physically appealing explanation of coherence in apparently incoherent beams and of the characteristic modulation of the momentum distribution, found recently in neutron interferometry combined with spectral filtering. Certain conclusions about dualism and objectivity in quantum domain are also derived.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Genesis of Karl Popper's EPR-like experiment and its resonance amongst the physics community in the 1980s.Flavio Del Santo - 2018 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 62:56-70.
    Download  
     
    Export citation  
     
    Bookmark   2 citations