Switch to: References

Add citations

You must login to add citations.
  1. A Metasemantic Challenge for Mathematical Determinacy.Jared Warren & Daniel Waxman - 2020 - Synthese 197 (2):477-495.
    This paper investigates the determinacy of mathematics. We begin by clarifying how we are understanding the notion of determinacy before turning to the questions of whether and how famous independence results bear on issues of determinacy in mathematics. From there, we pose a metasemantic challenge for those who believe that mathematical language is determinate, motivate two important constraints on attempts to meet our challenge, and then use these constraints to develop an argument against determinacy and discuss a particularly popular approach (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Experimental Logics, Mechanism and Knowable Consistency.Martin Kaså - 2012 - Theoria 78 (3):213-224.
    In a paper published in 1975, Robert Jeroslow introduced the concept of an experimental logic as a generalization of ordinary formal systems such that theoremhood is a (or in practice ) rather than . These systems can be viewed as (rather crude) representations of axiomatic theories evolving stepwise over time. Similar ideas can be found in papers by Putnam (1965) and McCarthy and Shapiro (1987). The topic of the present article is a discussion of a suggestion by Allen Hazen, that (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Why anti-realists and classical mathematicians cannot get along.Stewart Shapiro - 2001 - Topoi 20 (1):53-63.
    Famously, Michael Dummett argues that considerations concerning the role of language in communication lead to the rejection of classical logic in favor of intuitionistic logic. Potentially, this results in massive revisions of established mathematics. Recently, Neil Tennant (“The law of excluded middle is synthetic a priori, if valid”, Philosophical Topics 24 (1996), 205-229) suggested that a Dummettian anti-realist can accept the law of excluded middle as a synthetic, a priori principle grounded on a metaphysical principle of determinacy. This article shows (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Mechanism, truth, and Penrose's new argument.Stewart Shapiro - 2003 - Journal of Philosophical Logic 32 (1):19-42.
    Sections 3.16 and 3.23 of Roger Penrose's Shadows of the mind (Oxford, Oxford University Press, 1994) contain a subtle and intriguing new argument against mechanism, the thesis that the human mind can be accurately modeled by a Turing machine. The argument, based on the incompleteness theorem, is designed to meet standard objections to the original Lucas-Penrose formulations. The new argument, however, seems to invoke an unrestricted truth predicate (and an unrestricted knowability predicate). If so, its premises are inconsistent. The usual (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • On the philosophical relevance of Gödel's incompleteness theorems.Panu Raatikainen - 2005 - Revue Internationale de Philosophie 59 (4):513-534.
    A survey of more philosophical applications of Gödel's incompleteness results.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Understanding, Expression and Unwelcome Logic.Štěpán Holub - 2020 - Studia Semiotyczne 34 (1):183-202.
    In this paper I will attempt to explain why the controversy surrounding the alleged refutation of Mechanism by Gödel’s theorem is continuing even after its unanimous refutation by logicians. I will argue that the philosophical point its proponents want to establish is a necessary gap between the intended meaning and its formulation. Such a gap is the main tenet of philosophical hermeneutics. While Gödel’s theorem does not disprove Mechanism, it is nevertheless an important illustration of the hermeneutic principle. The ongoing (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Diagonal Anti-Mechanist Arguments.David Kashtan - 2020 - Studia Semiotyczne 34 (1):203-232.
    Gödel’s first incompleteness theorem is sometimes said to refute mechanism about the mind. §1 contains a discussion of mechanism. We look into its origins, motivations and commitments, both in general and with regard to the human mind, and ask about the place of modern computers and modern cognitive science within the general mechanistic paradigm. In §2 we give a sharp formulation of a mechanistic thesis about the mind in terms of the mathematical notion of computability. We present the argument from (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On Martin-Löf’s Constructive Optimism.V. Alexis Peluce - 2020 - Studia Semiotyczne 34 (1):233-242.
    In his 1951 Gibbs Memorial Lecture, Kurt Gödel put forth his famous disjunction that either the power of the mind outstrips that of any machine or there are absolutely unsolvable problems. The view that there are no absolutely unsolvable problems is optimism, the view that there are such problems is pessimism. In his 1995—and, revised in 2013—Verificationism Then and Now, Per Martin-Löf presents an illustrative argument for a constructivist form of optimism. In response to that argument, Solomon Feferman points out (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Remarks on the Gödelian Anti-Mechanist Arguments.Panu Raatikainen - 2020 - Studia Semiotyczne 34 (1):267–278.
    Certain selected issues around the Gödelian anti-mechanist arguments which have received less attention are discussed.
    Download  
     
    Export citation  
     
    Bookmark  
  • Gödelova věta a relace logického důsledku.Jaroslav Zouhar - 2010 - Teorie Vědy / Theory of Science 32 (1):59-95.
    In his proof of the first incompleteness theorem, Kurt Gödel provided a method of showing the truth of specific arithmetical statements on the condition that all the axioms of a certain formal theory of arithmetic are true. Furthermore, the statement whose truth is shown in this way cannot be proved in the theory in question. Thus it may seem that the relation of logical consequence is wider than the relation of derivability by a pre-defined set of rules. The aim of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Inquiries into Cognition: Wittgenstein’s Language-Games and Peirce’s Semeiosis for the Philosophy of Cognition.Andrey Pukhaev - 2013 - Dissertation, Gregorian University
    SUMMARY Major theories of philosophical psychology and philosophy of mind are examined on the basis of the fundamental questions of ontology, metaphysics, epistemology, semantics and logic. The result is the choice between language of eliminative reductionism and dualism, neither of which answers properly the relation between mind and body. In the search for a non–dualistic and non–reductive language, Wittgenstein’s notion of language–games as the representative links between language and the world is considered together with Peirce’s semeiosis of cognition. The result (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Classical Computational Models.Richard Samuels - 2018 - In Mark Sprevak & Matteo Colombo (eds.), The Routledge Handbook of the Computational Mind. Routledge. pp. 103-119.
    Download  
     
    Export citation  
     
    Bookmark  
  • Arithmetical Reflection and the Provability of Soundness.Walter Dean - 2015 - Philosophia Mathematica 23 (1):31-64.
    Proof-theoretic reflection principles are schemas which attempt to express the soundness of arithmetical theories within their own language, e.g., ${\mathtt{{Prov}_{\mathsf {PA}} \rightarrow \varphi }}$ can be understood to assert that any statement provable in Peano arithmetic is true. It has been repeatedly suggested that justification for such principles follows directly from acceptance of an arithmetical theory $\mathsf {T}$ or indirectly in virtue of their derivability in certain truth-theoretic extensions thereof. This paper challenges this consensus by exploring relationships between reflection principles (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • In memory of Torkel Franzén.Solomon Feferman - unknown
    1. Logic, determinism and free will. The determinism-free will debate is perhaps as old as philosophy itself and has been engaged in from a great variety of points of view including those of scientific, theological and logical character; my concern here is to limit attention to two arguments from logic. To begin with, there is an argument in support of determinism that dates back to Aristotle, if not farther. It rests on acceptance of the Law of Excluded Middle, according to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the necessary philosophical premises of the Goedelian arguments.Fano Vincenzo & Graziani Pierluigi - unknown
    Lucas-Penrose type arguments have been the focus of many papers in the literature. In the present paper we attempt to evaluate the consequences of Gödel’s incompleteness theorems for the philosophy of the mind. We argue that the best answer to this question was given by Gödel already in 1951 when he realized that either our intellectual capability is not representable by a Turing Machine, or we can never know with mathematical certainty what such a machine is. But his considerations became (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Gödel’s Disjunctive Argument†.Wesley Wrigley - 2022 - Philosophia Mathematica 30 (3):306-342.
    Gödel argued that the incompleteness theorems entail that the mind is not a machine, or that certain arithmetical propositions are absolutely undecidable. His view was that the mind is not a machine, and that no arithmetical propositions are absolutely undecidable. I argue that his position presupposes that the idealized mathematician has an ability which I call the recursive-ordinal recognition ability. I show that we have this ability if, and only if, there are no absolutely undecidable arithmetical propositions. I argue that (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Penrose's new argument.Per Lindström - 2001 - Journal of Philosophical Logic 30 (3):241-250.
    It has been argued, by Penrose and others, that Gödel's proof of his first incompleteness theorem shows that human mathematics cannot be captured by a formal system F: the Gödel sentence G(F) of F can be proved by a (human) mathematician but is not provable in F. To this argment it has been objected that the mathematician can prove G(F) only if (s)he can prove that F is consistent, which is unlikely if F is complicated. Penrose has invented a new (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • The Algorithmicity of Mathematical Cognition.Theodor Nenu - 2024 - Journal of Consciousness Studies 31 (7):74-85.
    This article purports to establish the philosophical inappropriateness of using established theorems in mathematical logic, such as Gödel's (1931) first incompleteness theorem, in order to conclude that human minds have a non-algorithmic nature. First, I will argue that the ongoing debate in the philosophy of mathematics concerning absolute provability is fully independent of the question whether our brains are biologically instantiated computers or not. Second, through a combination of evolutionary considerations and the phenomenon of vagueness, I will demonstrate the fragility (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Gödel’s Incompleteness Theorem and the Anti-Mechanist Argument: Revisited.Yong Cheng - 2020 - Studia Semiotyczne 34 (1):159-182.
    This is a paper for a special issue of Semiotic Studies devoted to Stanislaw Krajewski’s paper. This paper gives some supplementary notes to Krajewski’s on the Anti-Mechanist Arguments based on Gödel’s incompleteness theorem. In Section 3, we give some additional explanations to Section 4–6 in Krajewski’s and classify some misunderstandings of Gödel’s incompleteness theorem related to AntiMechanist Arguments. In Section 4 and 5, we give a more detailed discussion of Gödel’s Disjunctive Thesis, Gödel’s Undemonstrability of Consistency Thesis and the definability (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On the Anti-Mechanist Arguments Based on Gödel’s Theorem.Stanisław Krajewski - 2020 - Studia Semiotyczne 34 (1):9-56.
    The alleged proof of the non-mechanical, or non-computational, character of the human mind based on Gödel’s incompleteness theorem is revisited. Its history is reviewed. The proof, also known as the Lucas argument and the Penrose argument, is refuted. It is claimed, following Gödel himself and other leading logicians, that antimechanism is not implied by Gödel’s theorems alone. The present paper sets out this refutation in its strongest form, demonstrating general theorems implying the inconsistency of Lucas’s arithmetic and the semantic inadequacy (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Rationality As A Meta-Analytical Capacity of the Human Mind: From the Social Sciences to Gödel.Nathalie Bulle - 2023 - Philosophy of the Social Sciences 53 (3):167-193.
    In contrast to dominant approaches to human reason involving essentially a logical and instrumental conception of rationality easily modeled by artificial intelligence mechanisms, I argue that the specific capacities of the human mind are meta-analytic in nature, understood as irreducible to the analytic or the logical, or else the computational. Firstly, the assumption of a meta-analytical level of rationality is derived from key insights developed in various branches of the social sciences. This meta-analytical level is then inferred from Gödel’s incompleteness (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the Depth of Gödel’s Incompleteness Theorems.Yong Cheng - forthcoming - Philosophia Mathematica.
    ABSTRACT We use Gödel’s incompleteness theorems as a case study for investigating mathematical depth. We examine the philosophical question of what the depth of Gödel’s incompleteness theorems consists in. We focus on the methodological study of the depth of Gödel’s incompleteness theorems, and propose three criteria to account for the depth of the incompleteness theorems: influence, fruitfulness, and unity. Finally, we give some explanations for our account of the depth of Gödel’s incompleteness theorems.
    Download  
     
    Export citation  
     
    Bookmark  
  • The Problematic Nature of Gödel’s Disjunctions and Lucas-Penrose’s Theses.Arnon Avron - 2020 - Studia Semiotyczne 34 (1):83-108.
    We show that the name “Lucas-Penrose thesis” encompasses several different theses. All these theses refer to extremely vague concepts, and so are either practically meaningless, or obviously false. The arguments for the various theses, in turn, are based on confusions with regard to the meaning of these vague notions, and on unjustified hidden assumptions concerning them. All these observations are true also for all interesting versions of the much weaker thesis known as “Gö- del disjunction”. Our main conclusions are that (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Anti-Mechanist Argument Based on Gödel’s Incompleteness Theorems, Indescribability of the Concept of Natural Number and Deviant Encodings.Paula Quinon - 2020 - Studia Semiotyczne 34 (1):243-266.
    This paper reassesses the criticism of the Lucas-Penrose anti-mechanist argument, based on Gödel’s incompleteness theorems, as formulated by Krajewski : this argument only works with the additional extra-formal assumption that “the human mind is consistent”. Krajewski argues that this assumption cannot be formalized, and therefore that the anti-mechanist argument – which requires the formalization of the whole reasoning process – fails to establish that the human mind is not mechanistic. A similar situation occurs with a corollary to the argument, that (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation