Switch to: References

Citations of:

Ineffability within the limits of abstraction alone

In Philip A. Ebert & Marcus Rossberg (eds.), Abstractionism: Essays in Philosophy of Mathematics. Oxford, England: Oxford University Press UK (2016)

Add citations

You must login to add citations.
  1. Linnebo on Analyticity and Thin Existence.Mark Povich - 2024 - Philosophia Mathematica 32 (3):332–357.
    In his groundbreaking book, Thin Objects, Linnebo (2018) argues for an account of neo-Fregean abstraction principles and thin existence that does not rely on analyticity or conceptual rules. It instead relies on a metaphysical notion he calls “sufficiency”. In this short discussion, I defend the analytic or conceptual rule account of thin existence.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Caesar Problem — A Piecemeal Solution.J. P. Studd - 2023 - Philosophia Mathematica 31 (2):236-267.
    The Caesar problem arises for abstractionist views, which seek to secure reference for terms such as ‘the number of Xs’ or #X by stipulating the content of ‘unmixed’ identity contexts like ‘#X = #Y’. Frege objects that this stipulation says nothing about ‘mixed’ contexts such as ‘# X = Julius Caesar’. This article defends a neglected response to the Caesar problem: the content of mixed contexts is just as open to stipulation as that of unmixed contexts.
    Download  
     
    Export citation  
     
    Bookmark  
  • Minimalism, Trivialism, Aristotelianism.Andrea Sereni & Luca Zanetti - 2023 - Theoria 89 (3):280-297.
    Minimalism and Trivialism are two recent forms of lightweight Platonism in the philosophy of mathematics: Minimalism is the view that mathematical objects arethinin the sense that “very little is required for their existence”, whereas Trivialism is the view that mathematical statements have trivial truth‐conditions, that is, that “nothing is required of the world in order for those conditions to be satisfied”. In order to clarify the relation between the mathematical and the non‐mathematical domain that these views envisage, it has recently (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On Number-Set Identity: A Study.Sean C. Ebels-Duggan - 2022 - Philosophia Mathematica 30 (2):223-244.
    Benacerraf’s 1965 multiple-reductions argument depends on what I call ‘deferential logicism’: his necessary condition for number-set identity is most plausible against a background Quineanism that allows autonomy of the natural number concept. Steinhart’s ‘folkist’ sufficient condition on number-set identity, by contrast, puts that autonomy at the center — but fails for not taking the folk perspective seriously enough. Learning from both sides, we explore new conditions on number-set identity, elaborating a suggestion from Wright.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • What are Implicit Definitions?Eduardo N. Giovannini & Georg Schiemer - 2019 - Erkenntnis 86 (6):1661-1691.
    The paper surveys different notions of implicit definition. In particular, we offer an examination of a kind of definition commonly used in formal axiomatics, which in general terms is understood as providing a definition of the primitive terminology of an axiomatic theory. We argue that such “structural definitions” can be semantically understood in two different ways, namely as specifications of the meaning of the primitive terms of a theory and as definitions of higher-order mathematical concepts or structures. We analyze these (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On the Philosophical Significance of Frege’s Constraint.Andrea Sereni - 2019 - Philosophia Mathematica 27 (2):244–275.
    Foundational projects disagree on whether pure and applied mathematics should be explained together. Proponents of unified accounts like neologicists defend Frege’s Constraint (FC), a principle demanding that an explanation of applicability be provided by mathematical definitions. I reconsider the philosophical import of FC, arguing that usual conceptions are biased by ontological assumptions. I explore more reasonable weaker variants — Moderate and Modest FC — arguing against common opinion that ante rem structuralism (and other) views can meet them. I dispel doubts (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)Hypatia's silence.Martin Fischer, Leon Horsten & Carlo Nicolai - 2021 - Noûs 55 (1):62-85.
    Hartry Field distinguished two concepts of type‐free truth: scientific truth and disquotational truth. We argue that scientific type‐free truth cannot do justificatory work in the foundations of mathematics. We also present an argument, based on Crispin Wright's theory of cognitive projects and entitlement, that disquotational truth can do justificatory work in the foundations of mathematics. The price to pay for this is that the concept of disquotational truth requires non‐classical logical treatment.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Taking Stock: Hale, Heck, and Wright on Neo-Logicism and Higher-Order Logic.Crispin Wright - 2021 - Philosophia Mathematica 29 (3): 392--416.
    ABSTRACT Four philosophical concerns about higher-order logic in general and the specific demands placed on it by the neo-logicist project are distinguished. The paper critically reviews recent responses to these concerns by, respectively, the late Bob Hale, Richard Kimberly Heck, and myself. It is argued that these score some successes. The main aim of the paper, however, is to argue that the most serious objection to the applications of higher-order logic required by the neo-logicist project has not been properly understood. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Frege's Cardinals and Neo-Logicism.Roy T. Cook - 2016 - Philosophia Mathematica 24 (1):60-90.
    Gottlob Frege defined cardinal numbers in terms of value-ranges governed by the inconsistent Basic Law V. Neo-logicists have revived something like Frege's original project by introducing cardinal numbers as primitive objects, governed by Hume's Principle. A neo-logicist foundation for set theory, however, requires a consistent theory of value-ranges of some sort. Thus, it is natural to ask whether we can reconstruct the cardinal numbers by retaining Frege's definition and adopting an alternative consistent principle governing value-ranges. Given some natural assumptions regarding (...)
    Download  
     
    Export citation  
     
    Bookmark