Switch to: References

Add citations

You must login to add citations.
  1. Wittgenstein on Mathematical Identities.André Porto - 2012 - Disputatio 4 (34):755-805.
    This paper offers a new interpretation for Wittgenstein`s treatment of mathematical identities. As it is widely known, Wittgenstein`s mature philosophy of mathematics includes a general rejection of abstract objects. On the other hand, the traditional interpretation of mathematical identities involves precisely the idea of a single abstract object – usually a number –named by both sides of an equation.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Objectivity Sans Intelligibility. Hermann Weyl's Symbolic Constructivism.Iulian D. Toader - 2011 - Dissertation, University of Notre Dame
    A new form of skepticism is described, which holds that objectivity and understanding are incompossible ideals of modern science. This is attributed to Weyl, hence its name: Weylean skepticism. Two general defeat strategies are then proposed, one of which is rejected.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Proofs Versus Experiments: Wittgensteinian Themes Surrounding the Four-Color Theorem.G. D. Secco - 2017 - In Marcos Silva (ed.), How Colours Matter to Philosophy. Cham: Springer. pp. 289-307.
    The Four-Colour Theorem (4CT) proof, presented to the mathematical community in a pair of papers by Appel and Haken in the late 1970's, provoked a series of philosophical debates. Many conceptual points of these disputes still require some elucidation. After a brief presentation of the main ideas of Appel and Haken’s procedure for the proof and a reconstruction of Thomas Tymoczko’s argument for the novelty of 4CT’s proof, we shall formulate some questions regarding the connections between the points raised by (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Surveyability and Mathematical Certainty.Kai Michael Büttner - 2017 - Axiomathes 27 (1):113-128.
    The paper provides an interpretation of Wittgenstein’s claim that a mathematical proof must be surveyable. It will be argued that this claim specifies a precondition for the applicability of the word ‘proof’. Accordingly, the latter is applicable to a proof-pattern only if we can come to agree by mere observation whether or not the pattern possesses the relevant structural features. The claim is problematic. It does not imply any questionable finitist doctrine. But it cannot be said to articulate a feature (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Wittgenstein And Labyrinth Of ‘Actual Infinity’: The Critique Of Transfinite Set Theory.Valérie Lynn Therrien - 2012 - Ithaque 10:43-65.
    In order to explain Wittgenstein’s account of the reality of completed infinity in mathematics, a brief overview of Cantor’s initial injection of the idea into set- theory, its trajectory and the philosophic implications he attributed to it will be presented. Subsequently, we will first expound Wittgenstein’s grammatical critique of the use of the term ‘infinity’ in common parlance and its conversion into a notion of an actually existing infinite ‘set’. Secondly, we will delve into Wittgenstein’s technical critique of the concept (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Semantical Mutation, Algorithms and Programs.Porto André - 2015 - Dissertatio (S1):44-76.
    This article offers an explanation of perhaps Wittgenstein’s strangest and least intuitive thesis – the semantical mutation thesis – according to which one can never answer a mathematical conjecture because the new proof alters the very meanings of the terms involved in the original question. Instead of basing our justification on the distinction between mere calculation and proofs of isolated propositions, characteristic of Wittgenstein’s intermediary period, we generalize it to include conjectures involving effective procedures as well.
    Download  
     
    Export citation  
     
    Bookmark  
  • Normativity and Mathematics: A Wittgensteinian Approach to the Study of Number.J. Robert Loftis - 1999 - Dissertation, Northwestern University
    I argue for the Wittgensteinian thesis that mathematical statements are expressions of norms, rather than descriptions of the world. An expression of a norm is a statement like a promise or a New Year's resolution, which says that someone is committed or entitled to a certain line of action. A expression of a norm is not a mere description of a regularity of human behavior, nor is it merely a descriptive statement which happens to entail a norms. The view can (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Wittgenstein Sobre as Provas Indutivas.André Porto - 2009 - Dois Pontos 6 (2).
    This paper offers a reconstruction of Wittgenstein's discussion on inductive proofs. A "algebraic version" of these indirect proofs is offered and contrasted with the usual ones in which an infinite sequence of modus pones is projected.
    Download  
     
    Export citation  
     
    Bookmark  
  • Depth and Clarity * Felix Muhlholzer. Braucht die Mathematik eine Grundlegung? Eine Kommentar des Teils III von Wittgensteins Bemerkungen uber die Grundlagen der Mathematik [Does Mathematics need a Foundation? A Commentary on Part III of Wittgenstein's Remarks on the Foundations of Mathematics]. Frankfurt: Vittorio Klostermann, 2010. ISBN: 978-3-465-03667-8. Pp. xiv + 602. [REVIEW]Juliet Floyd - 2015 - Philosophia Mathematica 23 (2):255-276.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Multisemiosis and Incommensurability.S. K. Arun Murthi & Sundar Sarukkai - 2009 - International Studies in the Philosophy of Science 23 (3):297-311.
    Central to Kuhn's notion of incommensurability are the ideas of meaning variance and lexicon, and the impossibility of translation of terms across different theories. Such a notion of incommensurability is based on a particular understanding of what a scientific language is. In this paper we first attempt to understand this notion of scientific language in the context of incommensurability. We consider the consequences of the essential multisemiotic character of scientific theories and show how this leads to even a single theory (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Wittgenstein and Gödel: An Attempt to Make ‘Wittgenstein’s Objection’ Reasonable†.Timm Lampert - 2018 - Philosophia Mathematica 26 (3):324-345.
    According to some scholars, such as Rodych and Steiner, Wittgenstein objects to Gödel’s undecidability proof of his formula $$G$$, arguing that given a proof of $$G$$, one could relinquish the meta-mathematical interpretation of $$G$$ instead of relinquishing the assumption that Principia Mathematica is correct. Most scholars agree that such an objection, be it Wittgenstein’s or not, rests on an inadequate understanding of Gödel’s proof. In this paper, I argue that there is a possible reading of such an objection that is, (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Dignity of a Rule: Wittgenstein, Mathematical Norms, and Truth.Michael Hymers - 2003 - Dialogue 42 (3):419-446.
    RésuméPaul Boghossian soutient contre Wittgenstein que le normativisme au sujet de la logique et des mathématiques est incompatible avec le fait de tenir les énoncés logiques et mathématiques pour vrais et que le normativisme entraîne une régression indue. Je soutiens, pour ma part, que le normativisme n'entraîne pas une telle régression, parce que les normes peuvent être implicites et que le normativisme peut bien être «factualiste» si l'on rejette ce que Rockney Jacobsen appelle le «cognitivisme sémantique». Je tiens en outre (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)Motivating Wittgenstein's Perspective on Mathematical Sentences as Norms.Simon Friederich - 2011 - Philosophia Mathematica 19 (1):1-19.
    The later Wittgenstein’s perspective on mathematical sentences as norms is motivated for sentences belonging to Hilbertian axiomatic systems where the axioms are treated as implicit definitions. It is shown that in this approach the axioms are employed as norms in that they function as standards of what counts as using the concepts involved. This normative dimension of their mode of use, it is argued, is inherited by the theorems derived from them. Having been motivated along these lines, Wittgenstein’s perspective on (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations