Switch to: References

Add citations

You must login to add citations.
  1. Gödel's path from the incompleteness theorems (1931) to phenomenology (1961).Richard Tieszen - 1998 - Bulletin of Symbolic Logic 4 (2):181-203.
    In a lecture manuscript written around 1961, Gödel describes a philosophical path from the incompleteness theorems to Husserl's phenomenology. It is known that Gödel began to study Husserl's work in 1959 and that he continued to do so for many years. During the 1960s, for example, he recommended the sixth investigation of Husserl's Logical Investigations to several logicians for its treatment of categorial intuition. While Gödel may not have been satisfied with what he was able to obtain from philosophy and (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Higher-order free logic and the Prior-Kaplan paradox.Andrew Bacon, John Hawthorne & Gabriel Uzquiano - 2016 - Canadian Journal of Philosophy 46 (4-5):493-541.
    The principle of universal instantiation plays a pivotal role both in the derivation of intensional paradoxes such as Prior’s paradox and Kaplan’s paradox and the debate between necessitism and contingentism. We outline a distinctively free logical approach to the intensional paradoxes and note how the free logical outlook allows one to distinguish two different, though allied themes in higher-order necessitism. We examine the costs of this solution and compare it with the more familiar ramificationist approaches to higher-order logic. Our assessment (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • What is Absolute Undecidability?†.Justin Clarke-Doane - 2012 - Noûs 47 (3):467-481.
    It is often supposed that, unlike typical axioms of mathematics, the Continuum Hypothesis (CH) is indeterminate. This position is normally defended on the ground that the CH is undecidable in a way that typical axioms are not. Call this kind of undecidability “absolute undecidability”. In this paper, I seek to understand what absolute undecidability could be such that one might hope to establish that (a) CH is absolutely undecidable, (b) typical axioms are not absolutely undecidable, and (c) if a mathematical (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations