Switch to: References

Add citations

You must login to add citations.
  1. Order Types of Models of Fragments of Peano Arithmetic.Lorenzo Galeotti & Benedikt Löwe - 2022 - Bulletin of Symbolic Logic 28 (2):182-206.
    The complete characterisation of order types of non-standard models of Peano arithmetic and its extensions is a famous open problem. In this paper, we consider subtheories of Peano arithmetic (both with and without induction), in particular, theories formulated in proper fragments of the full language of arithmetic. We study the order types of their non-standard models and separate all considered theories via their possible order types. We compare the theories with and without induction and observe that the theories without induction (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Around Logical Perfection.John A. Cruz Morales, Andrés Villaveces & Boris Zilber - 2021 - Theoria 87 (4):971-985.
    Theoria, Volume 87, Issue 4, Page 971-985, August 2021.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)Around Logical Perfection.John A. Cruz Morales, Andrés Villaveces & Boris Zilber - 2021 - Theoria 87 (4):971-985.
    In this article we present a notion of “logical perfection”. We first describe through examples a notion oflogical perfectionextracted from the contemporary logical concept of categoricity. Categoricity (in power) has become in the past half century a main driver of ideas in model theory, both mathematically (stability theory may be regarded as a way of approximating categoricity) and philosophically. In the past two decades, categoricity notions have started to overlap with more classical notions of robustness and smoothness. These have been (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Atom-canonicity in varieties of cylindric algebras with applications to omitting types in multi-modal logic.Tarek Sayed Ahmed - 2020 - Journal of Applied Non-Classical Logics 30 (3):223-271.
    Fix 2 < n < ω and let C A n denote the class of cylindric algebras of dimension n. Roughly, C A n is the algebraic counterpart of the proof theory of first-order logic restricted to the first n var...
    Download  
     
    Export citation  
     
    Bookmark  
  • Pseudofinite difference fields and counting dimensions.Tingxiang Zou - 2021 - Journal of Mathematical Logic 21 (1):2050022.
    We study a family of ultraproducts of finite fields with the Frobenius automorphism in this paper. Their theories have the strict order property and TP2. But the coarse pseudofinite dimension of the definable sets is definable and integer-valued. Moreover, we also discuss the possible connection between coarse dimension and transformal transcendence degree in these difference fields.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Pseudofinite difference fields.Tingxiang Zou - 2019 - Journal of Mathematical Logic 19 (2):1950011.
    We study a family of ultraproducts of finite fields with the Frobenius automorphism in this paper. Their theories have the strict order property and TP2. But the coarse pseudofinite dimension of the definable sets is definable and integer-valued. Moreover, we establish a partial connection between coarse dimension and transformal transcendence degree in these difference fields.
    Download  
     
    Export citation  
     
    Bookmark  
  • Henkin constructions of models with size continuum.John T. Baldwin & Michael C. Laskowski - 2019 - Bulletin of Symbolic Logic 25 (1):1-33.
    We describe techniques for constructing models of size continuum inωsteps by simultaneously building a perfect set of enmeshed countable Henkin sets. Such models have perfect, asymptotically similar subsets. We survey applications involving Borel models, atomic models, two-cardinal transfers and models respecting various closure relations.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A preservation theorem for theories without the tree property of the first kind.Jan Dobrowolski & Hyeungjoon Kim - 2017 - Mathematical Logic Quarterly 63 (6):536-543.
    We prove the NTP1 property of a geometric theory T is inherited by theories of lovely pairs and H‐structures associated to T. We also provide a class of examples of nonsimple geometric NTP1 theories.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Pseudo real closed fields, pseudo p-adically closed fields and NTP2.Samaria Montenegro - 2017 - Annals of Pure and Applied Logic 168 (1):191-232.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • On nontrivial types of U-rank 1.Steven Buechler - 1987 - Journal of Symbolic Logic 52 (2):548-551.
    Theorem A. Suppose that T is superstable and p is a nontrivial type of U-rank 1. Then R(p, L, ∞) = 1. Theorem B. Suppose that T is totally transcendental and p is a nontrivial type of U-rank 1. Then p has Morley rank 1.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Craig Interpolation Theorem in abstract model theory.Jouko Väänänen - 2008 - Synthese 164 (3):401-420.
    The Craig Interpolation Theorem is intimately connected with the emergence of abstract logic and continues to be the driving force of the field. I will argue in this paper that the interpolation property is an important litmus test in abstract model theory for identifying “natural,” robust extensions of first order logic. My argument is supported by the observation that logics which satisfy the interpolation property usually also satisfy a Lindström type maximality theorem. Admittedly, the range of such logics is small.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Toward categoricity for classes with no maximal models.Saharon Shelah & Andrés Villaveces - 1999 - Annals of Pure and Applied Logic 97 (1-3):1-25.
    We provide here the first steps toward a Classification Theory ofElementary Classes with no maximal models, plus some mild set theoretical assumptions, when the class is categorical in some λ greater than its Löwenheim-Skolem number. We study the degree to which amalgamation may be recovered, the behaviour of non μ-splitting types. Most importantly, the existence of saturated models in a strong enough sense is proved, as a first step toward a complete solution to the o Conjecture for these classes. Further (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Non-forking frames in abstract elementary classes.Adi Jarden & Saharon Shelah - 2013 - Annals of Pure and Applied Logic 164 (3):135-191.
    The stability theory of first order theories was initiated by Saharon Shelah in 1969. The classification of abstract elementary classes was initiated by Shelah, too. In several papers, he introduced non-forking relations. Later, Shelah [17, II] introduced the good non-forking frame, an axiomatization of the non-forking notion.We improve results of Shelah on good non-forking frames, mainly by weakening the stability hypothesis in several important theorems, replacing it by the almost λ-stability hypothesis: The number of types over a model of cardinality (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Some coinductive graphs.A. H. Lachlan - 1990 - Archive for Mathematical Logic 29 (4):213-229.
    LetT be a universal theory of graphs such that Mod(T) is closed under disjoint unions. Letℳ T be a disjoint union ℳ i such that eachℳ i is a finite model ofT and every finite isomorphism type in Mod(T) is represented in{ℳ i ∶i<Ω3}. We investigate under what conditions onT, Th(ℳ T ) is a coinductive theory, where a theory is called coinductive if it can be axiomatizated by ∃∀-sentences. We also characterize coinductive graphs which have quantifier-free rank 1.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Shelah's stability spectrum and homogeneity spectrum in finite diagrams.Rami Grossberg & Olivier Lessmann - 2002 - Archive for Mathematical Logic 41 (1):1-31.
    We present Saharon Shelah's Stability Spectrum and Homogeneity Spectrum theorems, as well as the equivalence between the order property and instability in the framework of Finite Diagrams. Finite Diagrams is a context which generalizes the first order case. Localized versions of these theorems are presented. Our presentation is based on several papers; the point of view is contemporary and some of the proofs are new. The treatment of local stability in Finite Diagrams is new.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • A dichotomy for the number of ultrapowers.Ilijas Farah & Saharon Shelah - 2010 - Journal of Mathematical Logic 10 (1):45-81.
    We prove a strong dichotomy for the number of ultrapowers of a given model of cardinality ≤ 2ℵ0 associated with nonprincipal ultrafilters on ℕ. They are either all isomorphic, or else there are 22ℵ0 many nonisomorphic ultrapowers. We prove the analogous result for metric structures, including C*-algebras and II1 factors, as well as their relative commutants and include several applications. We also show that the CAF001-algebra [Formula: see text] always has nonisomorphic relative commutants in its ultrapowers associated with nonprincipal ultrafilters (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Hypergraph sequences as a tool for saturation of ultrapowers.M. E. Malliaris - 2012 - Journal of Symbolic Logic 77 (1):195-223.
    Let T 1 , T 2 be countable first-order theories, M i ⊨ T i , and ������ any regular ultrafilter on λ ≥ $\aleph_{0}$ . A longstanding open problem of Keisler asks when T 2 is more complex than T 1 , as measured by the fact that for any such λ, ������, if the ultrapower (M 2 ) λ /������ realizes all types over sets of size ≤ λ, then so must the ultrapower (M 1 ) λ /������. (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Stable types in rosy theories.Assaf Hasson & Alf Onshuus - 2010 - Journal of Symbolic Logic 75 (4):1211-1230.
    We study the behaviour of stable types in rosy theories. The main technical result is that a non-þ-forking extension of an unstable type is unstable. We apply this to show that a rosy group with a þ-generic stable type is stable. In the context of super-rosy theories of finite rank we conclude that non-trivial stable types of U þ -rank 1 must arise from definable stable sets.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A geometric introduction to forking and thorn-forking.Hans Adler - 2009 - Journal of Mathematical Logic 9 (1):1-20.
    A ternary relation [Formula: see text] between subsets of the big model of a complete first-order theory T is called an independence relation if it satisfies a certain set of axioms. The primary example is forking in a simple theory, but o-minimal theories are also known to have an interesting independence relation. Our approach in this paper is to treat independence relations as mathematical objects worth studying. The main application is a better understanding of thorn-forking, which turns out to be (...)
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • Generic variations of models of T.Andreas Baudisch - 2002 - Journal of Symbolic Logic 67 (3):1025-1038.
    Let T be a model-complete theory that eliminates the quantifier $\exists^\infty x$ . For T we construct a theory T+ such that any element in a model of T+ determines a model of T. We show that T+ has a model companion T1. We can iterate the construction. The produced theories are investigated.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Strongly 2-dimensional theories.Akito Tsuboi - 1988 - Journal of Symbolic Logic 53 (3):931-936.
    Download  
     
    Export citation  
     
    Bookmark  
  • The baire category theorem and cardinals of countable cofinality.Arnold W. Miller - 1982 - Journal of Symbolic Logic 47 (2):275-288.
    Let κ B be the least cardinal for which the Baire category theorem fails for the real line R. Thus κ B is the least κ such that the real line can be covered by κ many nowhere dense sets. It is shown that κ B cannot have countable cofinality. On the other hand it is consistent that the corresponding cardinal for 2 ω 1 be ℵ ω . Similar questions are considered for the ideal of measure zero sets, other (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Uniformization principles.Alan H. Mekler & Saharon Shelah - 1989 - Journal of Symbolic Logic 54 (2):441-459.
    It is consistent that for many cardinals λ there is a family of at least λ + unbounded subsets of λ which have uniformization properties. In particular if it is consistent that a supercompact cardinal exists, then it is consistent that ℵ ω has such a family. We have applications to point set topology, Whitehead groups and reconstructing separable abelian p-groups from their socles.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Forking and fundamental order in simple theories.Daniel Lascar & Anand Pillay - 1999 - Journal of Symbolic Logic 64 (3):1155-1158.
    We give a characterisation of forking in the context of simple theories in terms of the fundamental order.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Cardinalities of ultraproducts of finite sets.Sabine Koppelberg - 1980 - Journal of Symbolic Logic 45 (3):574-584.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • From stability to simplicity.Byunghan Kim & Anand Pillay - 1998 - Bulletin of Symbolic Logic 4 (1):17-36.
    §1. Introduction. In this report we wish to describe recent work on a class of first order theories first introduced by Shelah in [32], the simple theories. Major progress was made in the first author's doctoral thesis [17]. We will give a survey of this, as well as further works by the authors and others.The class of simple theories includes stable theories, but also many more, such as the theory of the random graph. Moreover, many of the theories of particular (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Definability in functional analysis.Jose Iovino - 1997 - Journal of Symbolic Logic 62 (2):493-505.
    The role played by real-valued functions in functional analysis is fundamental. One often considers metrics, or seminorms, or linear functionals, to mention some important examples. We introduce the notion of definable real-valued function in functional analysis: a real-valued function f defined on a structure of functional analysis is definable if it can be "approximated" by formulas which do not involve f. We characterize definability of real-valued functions in terms of a purely topological condition which does not involve logic.
    Download  
     
    Export citation  
     
    Bookmark  
  • Indiscernible sequences in a model which fails to have the order property.Rami Grossberg - 1991 - Journal of Symbolic Logic 56 (1):115-123.
    Basic results on the model theory of substructures of a fixed model are presented. The main point is to avoid the use of the compactness theorem, so this work can easily be applied to the model theory of L ω 1 ,ω and its relatives. Among other things we prove the following theorem: Let M be a model, and let λ be a cardinal satisfying λ |L(M)| = λ. If M does not have the ω-order property, then for every $A (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Partitioning subsets of stable models.Timothy Bays - 2001 - Journal of Symbolic Logic 66 (4):1899-1908.
    This paper discusses two combinatorial problems in stability theory. First we prove a partition result for subsets of stable models: for any A and B, we can partition A into |B |<κ(T ) pieces, Ai | i < |B |<κ(T ) , such that for each Ai there is a Bi ⊆ B where |Bi| < κ(T ) and Ai..
    Download  
     
    Export citation  
     
    Bookmark  
  • DOP and FCP in generic structures.John Baldwin & Saharon Shelah - 1998 - Journal of Symbolic Logic 63 (2):427-438.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Diverse classes.John T. Baldwin - 1989 - Journal of Symbolic Logic 54 (3):875-893.
    Let $\mathbf{I}(\mu,K)$ denote the number of nonisomorphic models of power $\mu$ and $\mathbf{IE}(\mu,K)$ the number of nonmutually embeddable models. We define in this paper the notion of a diverse class and use it to prove a number of results. The major result is Theorem B: For any diverse class $K$ and $\mu$ greater than the cardinality of the language of $K$, $\mathbf{IE}(\mu,K) \geq \min(2^\mu,\beth_2).$ From it we deduce both an old result of Shelah, Theorem C: If $T$ is countable and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Axiomatizing AECs and applications.Samson Leung - 2023 - Annals of Pure and Applied Logic 174 (5):103248.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Categoricity and universal classes.Tapani Hyttinen & Kaisa Kangas - 2018 - Mathematical Logic Quarterly 64 (6):464-477.
    Let be a universal class with categorical in a regular with arbitrarily large models, and let be the class of all for which there is such that. We prove that is totally categorical (i.e., ξ‐categorical for all ) and for. This result is partially stronger and partially weaker than a related result due to Vasey. In addition to small differences in our categoricity transfer results, we provide a shorter and simpler proof. In the end we prove the main theorem of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the class of flat stable theories.Daniel Palacín & Saharon Shelah - 2018 - Annals of Pure and Applied Logic 169 (8):835-849.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Theories without the tree property of the second kind.Artem Chernikov - 2014 - Annals of Pure and Applied Logic 165 (2):695-723.
    We initiate a systematic study of the class of theories without the tree property of the second kind — NTP2. Most importantly, we show: the burden is “sub-multiplicative” in arbitrary theories ; NTP2 is equivalent to the generalized Kimʼs lemma and to the boundedness of ist-weight; the dp-rank of a type in an arbitrary theory is witnessed by mutually indiscernible sequences of realizations of the type, after adding some parameters — so the dp-rank of a 1-type in any theory is (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • The model theory of unitriangular groups.Oleg V. Belegradek - 1994 - Annals of Pure and Applied Logic 68 (3):225-261.
    he model theory of groups of unitriangular matrices over rings is studied. An important tool in these studies is a new notion of a quasiunitriangular group. The models of the theory of all unitriangular groups are algebraically characterized; it turns out that all they are quasiunitriangular groups. It is proved that if R and S are domains or commutative associative rings then two quasiunitriangular groups over R and S are isomorphic only if R and S are isomorphic or antiisomorphic. This (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Categoricity and generalized model completeness.G. Ahlbrandt & John T. Baldwin - 1988 - Archive for Mathematical Logic 27 (1):1-4.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Model Companions of for Stable T.John T. Baldwin & Saharon Shelah - 2001 - Notre Dame Journal of Formal Logic 42 (3):129-142.
    We introduce the notion T does not omit obstructions. If a stable theory does not admit obstructions then it does not have the finite cover property (nfcp). For any theory T, form a new theory by adding a new unary function symbol and axioms asserting it is an automorphism. The main result of the paper asserts the following: If T is a stable theory, T does not admit obstructions if and only if has a model companion. The proof involves some (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The stability spectrum for classes of atomic models.John T. Baldwin & Saharon Shelah - 2012 - Journal of Mathematical Logic 12 (1):1250001-.
    We prove two results on the stability spectrum for Lω1,ω. Here [Formula: see text] denotes an appropriate notion of Stone space of m-types over M. Theorem for unstable case: Suppose that for some positive integer m and for every α μ, K is not i-stable in μ. These results provide a new kind of sufficient condition for the unstable case and shed some light on the spectrum of strictly stable theories in this context. The methods avoid the use of compactness (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Categoricity from one successor cardinal in Tame abstract elementary classes.Rami Grossberg & Monica Vandieren - 2006 - Journal of Mathematical Logic 6 (2):181-201.
    We prove that from categoricity in λ+ we can get categoricity in all cardinals ≥ λ+ in a χ-tame abstract elementary classe [Formula: see text] which has arbitrarily large models and satisfies the amalgamation and joint embedding properties, provided [Formula: see text] and λ ≥ χ. For the missing case when [Formula: see text], we prove that [Formula: see text] is totally categorical provided that [Formula: see text] is categorical in [Formula: see text] and [Formula: see text].
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • A note on subgroups of the automorphism group of a saturated model, and regular types.A. Pillay - 1989 - Journal of Symbolic Logic 54 (3):858-864.
    Let $M$ be a saturated model of a superstable theory and let $G = \operatorname{Aut}(M)$. We study subgroups $H$ of $G$ which contain $G_{(A)}, A$ the algebraic closure of a finite set, generalizing results of Lascar [L] as well as giving an alternative characterization of the simple superstable theories of [P]. We also make some observations about good, locally modular regular types $p$ in the context of $p$-simple types.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Vaught's conjecture for o-minimal theories.Laura L. Mayer - 1988 - Journal of Symbolic Logic 53 (1):146-159.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Transfering saturation, the finite cover property, and stability.John Baldwin, Rami Grossberg & Saharon Shelah - 1999 - Journal of Symbolic Logic 64 (2):678-684.
    $\underline{\text{Saturation is} (\mu, \kappa)-\text{transferable in} T}$ if and only if there is an expansion T 1 of T with ∣ T 1 ∣ = ∣ T ∣ such that if M is a μ-saturated model of T 1 and ∣ M ∣ ≥ κ then the reduct M ∣ L(T) is κ-saturated. We characterize theories which are superstable without f.c.p., or without f.c.p. as, respectively those where saturation is (ℵ 0 , λ)- transferable or (κ (T), λ)-transferable for all λ. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Rich models.Michael H. Albert & Rami P. Grossberg - 1990 - Journal of Symbolic Logic 55 (3):1292-1298.
    We define a rich model to be one which contains a proper elementary substructure isomorphic to itself. Existence, nonstructure, and categoricity theorems for rich models are proved. A theory T which has fewer than $\min(2^\lambda,\beth_2)$ rich models of cardinality $\lambda(\lambda > |T|)$ is totally transcendental. We show that a countable theory with a unique rich model in some uncountable cardinal is categorical in ℵ 1 and also has a unique countable rich model. We also consider a stronger notion of richness, (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • An AEC framework for fields with commuting automorphisms.Tapani Hyttinen & Kaisa Kangas - 2023 - Archive for Mathematical Logic 62 (7):1001-1032.
    In this paper, we introduce an AEC framework for studying fields with commuting automorphisms. Fields with commuting automorphisms are closely related to difference fields. Some authors define a difference ring (or field) as a ring (or field) together with several commuting endomorphisms, while others only study one endomorphism. Z. Chatzidakis and E. Hrushovski have studied in depth the model theory of ACFA, the model companion of difference fields with one automorphism. Our fields with commuting automorphisms generalize this setting. We have (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Exact saturation in pseudo-elementary classes for simple and stable theories.Itay Kaplan, Nicholas Ramsey & Saharon Shelah - 2022 - Journal of Mathematical Logic 23 (2).
    We use exact saturation to study the complexity of unstable theories, showing that a variant of this notion called pseudo-elementary class (PC)-exact saturation meaningfully reflects combinatorial dividing lines. We study PC-exact saturation for stable and simple theories. Among other results, we show that PC-exact saturation characterizes the stability cardinals of size at least continuum of a countable stable theory and, additionally, that simple unstable theories have PC-exact saturation at singular cardinals satisfying mild set-theoretic hypotheses. This had previously been open even (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A characterisation of elementary fibrations.Jacopo Emmenegger, Fabio Pasquali & Giuseppe Rosolini - 2022 - Annals of Pure and Applied Logic 173 (6):103103.
    Download  
     
    Export citation  
     
    Bookmark  
  • Hanf numbers for extendibility and related phenomena.John T. Baldwin & Saharon Shelah - 2022 - Archive for Mathematical Logic 61 (3):437-464.
    This paper contains portions of Baldwin’s talk at the Set Theory and Model Theory Conference and a detailed proof that in a suitable extension of ZFC, there is a complete sentence of \ that has maximal models in cardinals cofinal in the first measurable cardinal and, of course, never again.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On some dynamical aspects of NIP theories.Alireza Mofidi - 2018 - Archive for Mathematical Logic 57 (1-2):37-71.
    We investigate some dynamical features of the actions of automorphisms in the context of model theory. We interpret a few notions such as compact systems, entropy and symbolic representations from the theory of dynamical systems in the realm of model theory. In this direction, we settle a number of characterizations of NIP theories in terms of dynamics of automorphisms and invariant measures. For example, it is shown that the property of NIP corresponds to the compactness property of some associated systems (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A downward Löwenheim-Skolem theorem for infinitary theories which have the unsuperstability property.Rami Grossberg - 1988 - Journal of Symbolic Logic 53 (1):231-242.
    We present a downward Löwenheim-Skolem theorem which transfers downward formulas from L ∞,ω to L κ +, ω . The simplest instance is: Theorem 1. Let $\lambda > \kappa$ be infinite cardinals, and let L be a similarity type of cardinality κ at most. For every L-structure M of cardinality λ and every $X \subseteq M$ there exists a model $N \prec M$ containing the set X of power |X| · κ such that for every pair of finite sequences a, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation