Switch to: References

Add citations

You must login to add citations.
  1. Berkeley and Proof in Geometry.Richard J. Brook - 2012 - Dialogue 51 (3):419-435.
    Berkeley in his Introduction to the Principles of Human knowledge uses geometrical examples to illustrate a way of generating “universal ideas,” which allegedly account for the existence of general terms. In doing proofs we might, for example, selectively attend to the triangular shape of a diagram. Presumably what we prove using just that property applies to all triangles.I contend, rather, that given Berkeley’s view of extension, no Euclidean triangles exist to attend to. Rather proof, as Berkeley would normally assume, requires (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the representational role of Euclidean diagrams: representing qua samples.Tamires Dal Magro & Matheus Valente - 2021 - Synthese 199 (1-2):3739-3760.
    We advance a theory of the representational role of Euclidean diagrams according to which they are samples of co-exact features. We contrast our theory with two other conceptions, the instantial conception and Macbeth’s iconic view, with respect to how well they accommodate three fundamental constraints on theories of the Euclidean diagrammatic practice— that Euclidean diagrams are used in proofs whose results are wholly general, that Euclidean diagrams indicate the co-exact features that the geometer is allowed to infer from them and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Ten Misconceptions from the History of Analysis and Their Debunking.Piotr Błaszczyk, Mikhail G. Katz & David Sherry - 2013 - Foundations of Science 18 (1):43-74.
    The widespread idea that infinitesimals were “eliminated” by the “great triumvirate” of Cantor, Dedekind, and Weierstrass is refuted by an uninterrupted chain of work on infinitesimal-enriched number systems. The elimination claim is an oversimplification created by triumvirate followers, who tend to view the history of analysis as a pre-ordained march toward the radiant future of Weierstrassian epsilontics. In the present text, we document distortions of the history of analysis stemming from the triumvirate ideology of ontological minimalism, which identified the continuum (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Berkeley et les idées générales mathématiques.Claire Schwartz - 2010 - Revue Philosophique de la France Et de l'Etranger 1 (1):31-44.
    Les Principes de la connaissance humaine sont l'occasion pour Berkeley de nier l'existence des idées générales abstraites. Il admet cependant l'existence d'idées générales, plus exactement d'idées déterminées à signification générale. C'est ainsi qu'il peut rendre compte de la généralité de certaines démonstrations. L'exemple choisi est celui de l'idée de triangle dans le cadre d'une démonstration géométrique. Mais peut-on également rendre compte de cette manière des démonstrations et des idées algébriques et notamment celle de quantité? In the Principles of human knowledge, (...)
    Download  
     
    Export citation  
     
    Bookmark