Switch to: References

Add citations

You must login to add citations.
  1. On Modal Logics of Model-Theoretic Relations.Denis I. Saveliev & Ilya B. Shapirovsky - 2020 - Studia Logica 108 (5):989-1017.
    Given a class $$\mathcal {C}$$ of models, a binary relation $$\mathcal {R}$$ between models, and a model-theoretic language L, we consider the modal logic and the modal algebra of the theory of $$\mathcal {C}$$ in L where the modal operator is interpreted via $$\mathcal {R}$$. We discuss how modal theories of $$\mathcal {C}$$ and $$\mathcal {R}$$ depend on the model-theoretic language, their Kripke completeness, and expressibility of the modality inside L. We calculate such theories for the submodel and the quotient (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Mathematical modal logic: A view of its evolution.Robert Goldblatt - 2003 - Journal of Applied Logic 1 (5-6):309-392.
    Download  
     
    Export citation  
     
    Bookmark   57 citations  
  • The modal logic of {beta(mathbb{N})}.Guram Bezhanishvili & John Harding - 2009 - Archive for Mathematical Logic 48 (3-4):231-242.
    Let ${\beta(\mathbb{N})}$ denote the Stone–Čech compactification of the set ${\mathbb{N}}$ of natural numbers (with the discrete topology), and let ${\mathbb{N}^\ast}$ denote the remainder ${\beta(\mathbb{N})-\mathbb{N}}$ . We show that, interpreting modal diamond as the closure in a topological space, the modal logic of ${\mathbb{N}^\ast}$ is S4 and that the modal logic of ${\beta(\mathbb{N})}$ is S4.1.2.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Logic for physical space: From antiquity to present days.Marco Aiello, Guram Bezhanishvili, Isabelle Bloch & Valentin Goranko - 2012 - Synthese 186 (3):619-632.
    Since the early days of physics, space has called for means to represent, experiment, and reason about it. Apart from physicists, the concept of space has intrigued also philosophers, mathematicians and, more recently, computer scientists. This longstanding interest has left us with a plethora of mathematical tools developed to represent and work with space. Here we take a special look at this evolution by considering the perspective of Logic. From the initial axiomatic efforts of Euclid, we revisit the major milestones (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Natural Deduction Calculus for S4.2.Simone Martini, Andrea Masini & Margherita Zorzi - 2024 - Notre Dame Journal of Formal Logic 65 (2):127-150.
    We propose a natural deduction calculus for the modal logic S4.2. The system is designed to match as much as possible the structure and the properties of the standard system of natural deduction for first-order classical logic, exploiting the formal analogy between modalities and quantifiers. The system is proved sound and complete with respect to (w.r.t.) the standard Hilbert-style formulation of S4.2. Normalization and its consequences are obtained in a natural way, with proofs that closely follow the analogous ones for (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The introduction of topology into analytic philosophy: two movements and a coda.Samuel C. Fletcher & Nathan Lackey - 2022 - Synthese 200 (3):1-34.
    Both early analytic philosophy and the branch of mathematics now known as topology were gestated and born in the early part of the 20th century. It is not well recognized that there was early interaction between the communities practicing and developing these fields. We trace the history of how topological ideas entered into analytic philosophy through two migrations, an earlier one conceiving of topology geometrically and a later one conceiving of topology algebraically. This allows us to reassess the influence and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Modal logic: A semantic perspective.Patrick Blackburn & Johan van Benthem - 1988 - Ethics 98:501-517.
    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 BASIC MODAL LOGIC . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • The temporal logic of two dimensional Minkowski spacetime is decidable.Robin Hirsch & Mark Reynolds - 2018 - Journal of Symbolic Logic 83 (3):829-867.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Dynamic Mereotopology II: Axiomatixing some Whiteheadean Type Space-time Logics.Dimiter Vakarelov - 1998 - In Marcus Kracht, Maarten de Rijke, Heinrich Wansing & Michael Zakharyaschev (eds.), Advances in Modal Logic. CSLI Publications. pp. 538-558.
    Download  
     
    Export citation  
     
    Bookmark  
  • A quick guided tour to the modal logic S4.2.Aggeliki Chalki, Costas D. Koutras & Yorgos Zikos - 2018 - Logic Journal of the IGPL 26 (4):429-451.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Modal logics of closed domains on Minkowski plane ★.Ilya Shapirovsky - 2007 - Journal of Applied Non-Classical Logics 17 (3):397-414.
    In this paper we study modal logics of closed domains on the real plane ordered by the chronological future relation. For the modal logic determined by an arbitrary closed convex domain with a smooth bound, we present a finite axiom system and prove the finite modal property.
    Download  
     
    Export citation  
     
    Bookmark  
  • On the axiomatizability of some first-order spatio-temporal theories.Sándor Vályi - 2015 - Synthese 192 (7):1-17.
    Spatio-temporal logic is a variant of branching temporal logic where one of the so-called causal relations on spacetime plays the role of a time flow. Allowing only rational numbers as space and time co-ordinates, we prove that a first-order spatio-temporal theory over this flow is recursively enumerable if and only if the dimension of spacetime does not exceed 2. The situation is somewhat different compared to the case of real co-ordinates, because we establish that even dimension 2 does not permit (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Axiomatizing relativistic dynamics using formal thought experiments.Attila Molnár & Gergely Székely - 2015 - Synthese 192 (7):2183-2222.
    Thought experiments are widely used in the informal explanation of Relativity Theories; however, they are not present explicitly in formalized versions of Relativity Theory. In this paper, we present an axiom system of Special Relativity which is able to grasp thought experiments formally and explicitly. Moreover, using these thought experiments, we can provide an explicit definition of relativistic mass based only on kinematical concepts and we can geometrically prove the Mass Increase Formula in a natural way, without postulates of conservation (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Ontologies for Plane, Polygonal Mereotopology.Ian Pratt & Oliver Lemon - 1997 - Notre Dame Journal of Formal Logic 38 (2):225-245.
    Several authors have suggested that a more parsimonious and conceptually elegant treatment of everyday mereological and topological reasoning can be obtained by adopting a spatial ontology in which regions, not points, are the primitive entities. This paper challenges this suggestion for mereotopological reasoning in two-dimensional space. Our strategy is to define a mereotopological language together with a familiar, point-based interpretation. It is proposed that, to be practically useful, any alternative region-based spatial ontology must support the same sentences in our language (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations