Switch to: References

Add citations

You must login to add citations.
  1. Shelah's Categoricity Conjecture from a Successor for Tame Abstract Elementary Classes.Rami Grossberg & Monica Vandieren - 2006 - Journal of Symbolic Logic 71 (2):553 - 568.
    We prove a categoricity transfer theorem for tame abstract elementary classes. Theorem 0.1. Suppose that K is a χ-tame abstract elementary class and satisfies the amalgamation and joint embedding properties and has arbitrarily large models. Let λ ≥ Max{χ.LS(K)⁺}. If K is categorical in λ and λ⁺, then K is categorical in λ⁺⁺. Combining this theorem with some results from [37], we derive a form of Shelah's Categoricity Conjecture for tame abstract elementary classes: Corollary 0.2. Suppose K is a χ-tame (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Uncountable Dense Categoricity in Cats.Itay Ben-Yaacov - 2005 - Journal of Symbolic Logic 70 (3):829 - 860.
    We prove that under reasonable assumptions, every cat (compact abstract theory) is metric, and develop some of the theory of metric cats. We generalise Morley's theorem: if a countable Hausdorff cat T has a unique complete model of density character Λ ≥ ω₁, then it has a unique complete model of density character Λ for every Λ ≥ ω₁.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Notes on the stability of separably closed fields.Carol Wood - 1979 - Journal of Symbolic Logic 44 (3):412-416.
    The stability of each of the theories of separably closed fields is proved, in the manner of Shelah's proof of the corresponding result for differentially closed fields. These are at present the only known stable but not superstable theories of fields. We indicate in § 3 how each of the theories of separably closed fields can be associated with a model complete theory in the language of differential algebra. We assume familiarity with some basic facts about model completeness [4], stability (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • The notion of independence in categories of algebraic structures, part I: Basic properties.Gabriel Srour - 1988 - Annals of Pure and Applied Logic 38 (2):185-213.
    We define a formula φ in a first-order language L , to be an equation in a category of L -structures K if for any H in K , and set p = {φ;i ϵI, a i ϵ H} there is a finite set I 0 ⊂ I such that for any f : H → F in K , ▪. We say that an elementary first-order theory T which has the amalgamation property over substructures is equational if every quantifier-free (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Dividing Lines Between Positive Theories.Anna Dmitrieva, Francesco Gallinaro & Mark Kamsma - forthcoming - Journal of Symbolic Logic:1-25.
    We generalise the properties$\mathsf {OP}$,$\mathsf {IP}$,k-$\mathsf {TP}$,$\mathsf {TP}_{1}$,k-$\mathsf {TP}_{2}$,$\mathsf {SOP}_{1}$,$\mathsf {SOP}_{2}$, and$\mathsf {SOP}_{3}$to positive logic, and prove various implications and equivalences between them. We also provide a characterisation of stability in positive logic in analogy with the one in full first-order logic, both on the level of formulas and on the level of theories. For simple theories there are the classically equivalent definitions of not having$\mathsf {TP}$and dividing having local character, which we prove to be equivalent in positive logic as (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Nsop-Like Independence in Aecats.Mark Kamsma - 2024 - Journal of Symbolic Logic 89 (2):724-757.
    The classes stable, simple, and NSOP $_1$ in the stability hierarchy for first-order theories can be characterised by the existence of a certain independence relation. For each of them there is a canonicity theorem: there can be at most one nice independence relation. Independence in stable and simple first-order theories must come from forking and dividing (which then coincide), and for NSOP $_1$ theories it must come from Kim-dividing. We generalise this work to the framework of Abstract Elementary Categories (AECats) (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Limit models in metric abstract elementary classes: the categorical case.Andrés Villaveces & Pedro Zambrano - 2016 - Mathematical Logic Quarterly 62 (4-5):319-334.
    We study versions of limit models adapted to the context of metric abstract elementary classes. Under categoricity and superstability-like assumptions, we generalize some theorems from 7, 15-17. We prove criteria for existence and uniqueness of limit models in the metric context.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Finite variable logic, stability and finite models.Marko Djordjevic - 2001 - Journal of Symbolic Logic 66 (2):837-858.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Groups of small Morley rank.Gregory Cherlin - 1979 - Annals of Mathematical Logic 17 (1):1.
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Superstable fields and groups.G. Cherlin - 1980 - Annals of Mathematical Logic 18 (3):227.
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Notes on quasiminimality and excellence.John T. Baldwin - 2004 - Bulletin of Symbolic Logic 10 (3):334-366.
    This paper ties together much of the model theory of the last 50 years. Shelah's attempts to generalize the Morley theorem beyond first order logic led to the notion of excellence, which is a key to the structure theory of uncountable models. The notion of Abstract Elementary Class arose naturally in attempting to prove the categoricity theorem for L ω 1 ,ω (Q). More recently, Zilber has attempted to identify canonical mathematical structures as those whose theory (in an appropriate logic) (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Chains of saturated models in AECs.Will Boney & Sebastien Vasey - 2017 - Archive for Mathematical Logic 56 (3-4):187-213.
    We study when a union of saturated models is saturated in the framework of tame abstract elementary classes with amalgamation. We prove:Theorem 0.1.IfKis a tame AEC with amalgamation satisfying a natural definition of superstability, then for all high-enoughλ:\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda {:}$$\end{document}The union of an increasing chain ofλ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-saturated models isλ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-saturated.There exists a type-full goodλ\documentclass[12pt]{minimal} \usepackage{amsmath} (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • On Supersimplicity and Lovely Pairs of Cats.Itay Ben-Yaacov - 2006 - Journal of Symbolic Logic 71 (3):763 - 776.
    We prove that the definition of supersimplicity in metric structures from [7] is equivalent to an a priori stronger variant. This stronger variant is then used to prove that if T is a supersimple Hausdorff cat then so is its theory of lovely pairs.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The notion of independence in categories of algebraic structures, Part I: Basic properties.M. Srour - 1988 - Annals of Pure and Applied Logic 38 (2):185.
    Download  
     
    Export citation  
     
    Bookmark   9 citations