Switch to: References

Add citations

You must login to add citations.
  1. Expanding the notion of mechanism to further understanding of biopsychosocial disorders? Depression and medically-unexplained pain as cases in point.Jan Pieter Konsman - 2024 - Studies in History and Philosophy of Science Part A 103 (C):123-136.
    Evidence-Based Medicine has little consideration for mechanisms and philosophers of science and medicine have recently made pleas to increase the place of mechanisms in the medical evidence hierarchy. However, in this debate the notions of mechanisms seem to be limited to 'mechanistic processes' and 'complex-systems mechanisms,' understood as 'componential causal systems'. I believe that this will not do full justice to how mechanisms are used in biological, psychological and social sciences and, consequently, in a more biopsychosocial approach to medicine. Here, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Interdisciplinarity in the Making: Models and Methods in Frontier Science.Nancy J. Nersessian - 2022 - Cambridge, MA: MIT.
    A cognitive ethnography of how bioengineering scientists create innovative modeling methods. In this first full-scale, long-term cognitive ethnography by a philosopher of science, Nancy J. Nersessian offers an account of how scientists at the interdisciplinary frontiers of bioengineering create novel problem-solving methods. Bioengineering scientists model complex dynamical biological systems using concepts, methods, materials, and other resources drawn primarily from engineering. They aim to understand these systems sufficiently to control or intervene in them. What Nersessian examines here is how cutting-edge bioengineering (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Multiple-Models Juxtaposition and Trade-Offs among Modeling Desiderata.Yoshinari Yoshida - 2021 - Philosophy of Science 88 (1):103-123.
    This article offers a characterization of what I call multiple-models juxtaposition, a strategy for managing trade-offs among modeling desiderata. MMJ displays models of distinct phenomena to...
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)The means-end account of scientific, representational actions.Brandon Boesch - 2019 - Synthese 196 (6):2305-2322.
    While many recent accounts of scientific representation have given a central role to the agency and intentions of scientists in explaining representation, they have left these agential concepts unanalyzed. An account of scientific, representational actions will be a useful piece in offering a more complete account of the practice of representation in science. Drawing on an Anscombean approach to the nature of intentional actions, the Means-End Account of Scientific, Representational Actions describes three features of scientific, representational actions: (I) the final (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Leyes, mecanismos y modelos en biología: el caso de la genética mendeliana.Mario Casanueva - 2017 - Scientiae Studia 15 (2):343.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Representing Experimental Procedures through Diagrams at CERN’s Large Hadron Collider: The Communicatory Value of Diagrammatic Representations in Collaborative Research.Koray Karaca - 2017 - Perspectives on Science 25 (2):177-203.
    In relatively recent years, quite a number of diverse case studies concerning the use of visual displays—such as graphs, diagrams, tables, pictures, drawings, etc.—in both the physical and biological sciences have been offered in the literature of the history and philosophy of science —see, e.g., Miller 1984; Lynch and Woolgar 1990; Baigrie 1996; Pauwels 2006. These case studies have shown that visual representations fulfill important functions in both the theoretical and experimental practices of science, thereby emphasizing the non-verbal dimension of (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Using Pictorial Representations as Story-Telling.Sim-Hui Tee - forthcoming - Foundations of Science:1-21.
    Pictorial representations such as diagrams and figures are widely used in scientific literature for explanatory and descriptive purposes. The intuitive nature of pictorial representations coupled with texts foster a better understanding of the objects of study. Biological mechanisms and processes can be clearly illustrated and grasped in pictures. I argue that pictorial representations describe biological phenomena by telling stories. I elaborate on the role of narrative structures of pictures in the frontier research using a case study in immunology. I articulate (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Diagrammatic reasoning: Abstraction, interaction, and insight.Kristian Tylén, Riccardo Fusaroli, Johanne Stege Bjørndahl, Joanna Raczaszek-Leonardi, Svend Østergaard & Frederik Stjernfelt - 2014 - Pragmatics and Cognition 22 (2):264-283.
    Many types of everyday and specialized reasoning depend on diagrams: we use maps to find our way, we draw graphs and sketches to communicate concepts and prove geometrical theorems, and we manipulate diagrams to explore new creative solutions to problems. The active involvement and manipulation of representational artifacts for purposes of thinking and communicating is discussed in relation to C.S. Peirce’s notion of diagrammatical reasoning. We propose to extend Peirce’s original ideas and sketch a conceptual framework that delineates different kinds (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • The Journey from Discovery to Scientific Change: Scientific Communities, Shared Models, and Specialised Vocabulary.Sarah M. Roe - 2017 - International Studies in the Philosophy of Science 31 (1):47-67.
    Scientific communities as social groupings and the role that such communities play in scientific change and the production of scientific knowledge is currently under debate. I examine theory change as a complex social interaction among individual scientists and the scientific community, and argue that individuals will be motivated to adopt a more radical or innovative attitude when confronted with striking similarities between model systems and a more robust understanding of specialised vocabulary. Two case studies from the biological sciences, Barbara McClintock (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The cognitive integration of scientific instruments: Information, situated cognition, and scientific practice.Richard Heersmink - 2016 - Phenomenology and the Cognitive Sciences 15 (4):1-21.
    Researchers in the biological and biomedical sciences, particularly those working in laboratories, use a variety of artifacts to help them perform their cognitive tasks. This paper analyses the relationship between researchers and cognitive artifacts in terms of integration. It first distinguishes different categories of cognitive artifacts used in biological practice on the basis of their informational properties. This results in a novel classification of scientific instruments, conducive to an analysis of the cognitive interactions between researchers and artifacts. It then uses (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Modelling with words: Narrative and natural selection.Dominic K. Dimech - 2017 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 62:20-24.
    I argue that verbal models should be included in a philosophical account of the scientific practice of modelling. Weisberg (2013) has directly opposed this thesis on the grounds that verbal structures, if they are used in science, only merely describe models. I look at examples from Darwin's On the Origin of Species (1859) of verbally constructed narratives that I claim model the general phenomenon of evolution by natural selection. In each of the cases I look at, a particular scenario is (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Epistemological Import of Euclidean Diagrams.Daniele Molinini - 2016 - Kairos 16 (1):124-141.
    In this paper I concentrate on Euclidean diagrams, namely on those diagrams that are licensed by the rules of Euclid’s plane geometry. I shall overview some philosophical stances that have recently been proposed in philosophy of mathematics to account for the role of such diagrams in mathematics, and more particularly in Euclid’s Elements. Furthermore, I shall provide an original analysis of the epistemic role that Euclidean diagrams may have in empirical sciences, more specifically in physics. I shall claim that, although (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Sketching Biological Phenomena and Mechanisms.Sheredos Benjamin & Bechtel William - 2017 - Topics in Cognitive Science 9 (4):970-985.
    In many fields of biology, both the phenomena to be explained and the mechanisms proposed to explain them are commonly presented in diagrams. Our interest is in how scientists construct such diagrams. Researchers begin with evidence, typically developed experimentally and presented in data graphs. To arrive at a robust diagram of the phenomenon or the mechanism, they must integrate a variety of data to construct a single, coherent representation. This process often begins as the researchers create a first sketch, and (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Spot the difference: Causal contrasts in scientific diagrams.Raphael Scholl - 2016 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 60:77-87.
    An important function of scientific diagrams is to identify causal relationships. This commonly relies on contrasts that highlight the effects of specific difference-makers. However, causal contrast diagrams are not an obvious and easy to recognize category because they appear in many guises. In this paper, four case studies are presented to examine how causal contrast diagrams appear in a wide range of scientific reports, from experimental to observational and even purely theoretical studies. It is shown that causal contrasts can be (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Ups and Downs of Mechanism Realism: Functions, Levels, and Crosscutting Hierarchies.Joe Dewhurst & Alistair M. C. Isaac - 2021 - Erkenntnis 88 (3):1035-1057.
    Mechanism realists assert the existence of mechanisms as objective structures in the world, but their exact metaphysical commitments are unclear. We introduce Local Hierarchy Realism (LHR) as a substantive and plausible form of mechanism realism. The limits of LHR reveal a deep tension between two aspects of mechanists’ explanatory strategy. Functional decomposition identifies locally relevant entities and activities, while these same entities and activities are also embedded in a nested hierarchy of levels. In principle, a functional decomposition may identify entities (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Philosophy of Cell Biology.William Bechtel & Andrew Bollhagen - 2019 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)New Perspectives on Reductionism in Biology.Alan C. Love - 2018 - Philosophy of Science 85 (3):523-529.
    Reductive explanations are psychologically seductive; when given two explanations, people prefer the one that refers to lower-level components or processes to account for the phenomena under consideration even when information about these lower levels is irrelevant. Maybe individuals assume that a reductive explanation is what a scientific explanation should look like (e.g., neuroscience should explain psychology) or presume that information about lower-level components or processes is more explanatory (e.g., molecular detail explains better than anatomical detail). Philosophers have been analyzing reduction (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Sharpening the tools of imagination.Michael T. Stuart - 2022 - Synthese 200 (6):1-22.
    Thought experiments, models, diagrams, computer simulations, and metaphors can all be understood as tools of the imagination. While these devices are usually treated separately in philosophy of science, this paper provides a unified account according to which tools of the imagination are epistemically good insofar as they improve scientific imaginings. Improving scientific imagining is characterized in terms of epistemological consequences: more improvement means better consequences. A distinction is then drawn between tools being good in retrospect, at the time, and in (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Scientific modelling with diagrams.Ulrich E. Stegmann - 2019 - Synthese 198 (3):2675-2694.
    Diagrams can serve as representational models in scientific research, yet important questions remain about how they do so. I address some of these questions with a historical case study, in which diagrams were modified extensively in order to elaborate an early hypothesis of protein synthesis. The diagrams’ modelling role relied mainly on two features: diagrams were modified according to syntactic rules, which temporarily replaced physico-chemical reasoning, and diagram-to-target inferences were based on semantic interpretations. I then explore the lessons for the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Scientists’ use of diagrams in developing mechanistic explanations: A case study from chronobiology.Daniel C. Burnston, Benjamin Sheredos, Adele Abrahamsen & William Bechtel - 2014 - Pragmatics and Cognition 22 (2):224-243.
    We explore the crucial role of diagrams in scientific reasoning, especially reasoning directed at developing mechanistic explanations of biological phenomena. We offer a case study focusing on one research project that resulted in a published paper advancing a new understanding of the mechanism by which the central circadian oscillator in Synechococcus elongatus controls gene expression. By examining how the diagrams prepared for the paper developed over the course of multiple drafts, we show how the process of generating a new explanation (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Data graphs and mechanistic explanation.Daniel C. Burnston - 2016 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 57 (C):1-12.
    It is a widespread assumption in philosophy of science that data is what is explained by theory—that data itself is not explanatory. I draw on instances of representational and explanatory practice from mammalian chronobiology to suggest that this assumption is unsustainable. In many instances, biologists employ representations of data in explanatory ways that are not reducible to constraints on or evidence for representations of mechanisms. Data graphs are used to exemplify relationships between quantities in the mechanism, and often these representations (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • (1 other version)The means-end account of scientific, representational actions.Brandon Boesch - 2017 - Synthese:1-18.
    While many recent accounts of scientific representation have given a central role to the agency and intentions of scientists in explaining representation, they have left these agential concepts unanalyzed. An account of scientific, representational actions will be a useful piece in offering a more complete account of the practice of representation in science. Drawing on an Anscombean approach to the nature of intentional actions, the Means-End Account of Scientific, Representational Actions describes three features of scientific, representational actions: the final description (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Representing in the Student Laboratory.Brandon Boesch - 2018 - Transversal: International Journal for the Historiography of Science 5:34-48.
    In this essay, I will expand the philosophical discussion about the representational practice in science to examine its role in science education through four case studies. The cases are of what I call ‘educational laboratory experiments’, performative models used representationally by students to come to a better understanding of theoretical knowledge of a scientific discipline. The studies help to demonstrate some idiosyncratic features of representational practices in science education, most importantly a lack of novelty and discovery built into the ELEs (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Stuart Glennan's The New Mechanical Philosophy. [REVIEW]Carl F. Craver - 2018 - BJPS Review of Books.
    Download  
     
    Export citation  
     
    Bookmark  
  • Diagrammatic Cognition: Discovery and Design.William Bechtel - unknown - Cognitive Science 3:446-474.
    Download  
     
    Export citation  
     
    Bookmark  
  • Constructing diagrams to understand phenomena and mechanisms.Benjamin Sheredos & William Bechtel - manuscript
    Biologists often hypothesize mechanisms to explai phenomena. Our interest is how their understanding of the phenomena and mechanisms develops as they construct diagrams to communicate their claims. We present two case studies in which scientists integrate various data to create a single diagram to communicate their major conclusions in a research publication. In both cases, the history of revisions suggests that scientists' initial drafts encode biases and oversights that are only gradually overcome through prolonged, reflective re-design. To account for this, (...)
    Download  
     
    Export citation  
     
    Bookmark