Switch to: References

Add citations

You must login to add citations.
  1. Effective moduli from ineffective uniqueness proofs. An unwinding of de La Vallée Poussin's proof for Chebycheff approximation.Ulrich Kohlenbach - 1993 - Annals of Pure and Applied Logic 64 (1):27-94.
    Kohlenbach, U., Effective moduli from ineffective uniqueness proofs. An unwinding of de La Vallée Poussin's proof for Chebycheff approximation, Annals of Pure and Applied Logic 64 27–94.We consider uniqueness theorems in classical analysis having the form u ε U, v1, v2 ε Vu = 0 = G→v 1 = v2), where U, V are complete separable metric spaces, Vu is compact in V and G:U x V → is a constructive function.If is proved by arithmetical means from analytical assumptions x (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Weak axioms of determinacy and subsystems of analysis II.Kazuyuki Tanaka - 1991 - Annals of Pure and Applied Logic 52 (1-2):181-193.
    In [10], we have shown that the statement that all ∑ 1 1 partitions are Ramsey is deducible over ATR 0 from the axiom of ∑ 1 1 monotone inductive definition,but the reversal needs П 1 1 - CA 0 rather than ATR 0 . By contrast, we show in this paper that the statement that all ∑ 0 2 games are determinate is also deducible over ATR 0 from the axiom of ∑ 1 1 monotone inductive definition, but the (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • How Incomputable Is the Separable Hahn-Banach Theorem?Guido Gherardi & Alberto Marcone - 2009 - Notre Dame Journal of Formal Logic 50 (4):393-425.
    We determine the computational complexity of the Hahn-Banach Extension Theorem. To do so, we investigate some basic connections between reverse mathematics and computable analysis. In particular, we use Weak König's Lemma within the framework of computable analysis to classify incomputable functions of low complexity. By defining the multivalued function Sep and a natural notion of reducibility for multivalued functions, we obtain a computational counterpart of the subsystem of second-order arithmetic WKL0. We study analogies and differences between WKL0 and the class (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Brouwer’s Fan Theorem as an axiom and as a contrast to Kleene’s alternative.Wim Veldman - 2014 - Archive for Mathematical Logic 53 (5):621-693.
    The paper is a contribution to intuitionistic reverse mathematics. We introduce a formal system called Basic Intuitionistic Mathematics BIM, and then search for statements that are, over BIM, equivalent to Brouwer’s Fan Theorem or to its positive denial, Kleene’s Alternative to the Fan Theorem. The Fan Theorem is true under the intended intuitionistic interpretation and Kleene’s Alternative is true in the model of BIM consisting of the Turing-computable functions. The task of finding equivalents of Kleene’s Alternative is, intuitionistically, a nontrivial (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Non‐standard Analysis in WKL 0.Kazuyuki Tanaka - 1997 - Mathematical Logic Quarterly 43 (3):396-400.
    Within a weak subsystem of second‐order arithmetic WKL0, we develop basic part of non‐standard analysis up to the Peano existence theorem.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The Jordan curve theorem and the Schönflies theorem in weak second-order arithmetic.Nobuyuki Sakamoto & Keita Yokoyama - 2007 - Archive for Mathematical Logic 46 (5-6):465-480.
    In this paper, we show within ${\mathsf{RCA}_0}$ that both the Jordan curve theorem and the Schönflies theorem are equivalent to weak König’s lemma. Within ${\mathsf {WKL}_0}$ , we prove the Jordan curve theorem using an argument of non-standard analysis based on the fact that every countable non-standard model of ${\mathsf {WKL}_0}$ has a proper initial part that is isomorphic to itself (Tanaka in Math Logic Q 43:396–400, 1997).
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Lebesgue numbers and Atsuji spaces in subsystems of second-order arithmetic.Mariagnese Giusto & Alberto Marcone - 1998 - Archive for Mathematical Logic 37 (5-6):343-362.
    We study Lebesgue and Atsuji spaces within subsystems of second order arithmetic. The former spaces are those such that every open covering has a Lebesgue number, while the latter are those such that every continuous function defined on them is uniformly continuous. The main results we obtain are the following: the statement “every compact space is Lebesgue” is equivalent to $\hbox{\sf WKL}_0$ ; the statements “every perfect Lebesgue space is compact” and “every perfect Atsuji space is compact” are equivalent to (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A non-standard construction of Haar measure and weak könig's lemma.Kazuyuki Tanaka & Takeshi Yamazaki - 2000 - Journal of Symbolic Logic 65 (1):173-186.
    In this paper, we show within RCA 0 that weak Konig's lemma is necessary and sufficient to prove that any (separable) compact group has a Haar measure. Within WKL 0 , a Haar measure is constructed by a non-standard method based on a fact that every countable non-standard model of WKL 0 has a proper initial part isomorphic to itself [10].
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Connected choice and the Brouwer fixed point theorem.Vasco Brattka, Stéphane Le Roux, Joseph S. Miller & Arno Pauly - 2019 - Journal of Mathematical Logic 19 (1):1950004.
    We study the computational content of the Brouwer Fixed Point Theorem in the Weihrauch lattice. Connected choice is the operation that finds a point in a non-empty connected closed set given by negative information. One of our main results is that for any fixed dimension the Brouwer Fixed Point Theorem of that dimension is computably equivalent to connected choice of the Euclidean unit cube of the same dimension. Another main result is that connected choice is complete for dimension greater than (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Complex analysis in subsystems of second order arithmetic.Keita Yokoyama - 2007 - Archive for Mathematical Logic 46 (1):15-35.
    This research is motivated by the program of Reverse Mathematics. We investigate basic part of complex analysis within some weak subsystems of second order arithmetic, in order to determine what kind of set existence axioms are needed to prove theorems of basic analysis. We are especially concerned with Cauchy’s integral theorem. We show that a weak version of Cauchy’s integral theorem is proved in RCAo. Using this, we can prove that holomorphic functions are analytic in RCAo. On the other hand, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Primitive recursive reverse mathematics.Nikolay Bazhenov, Marta Fiori-Carones, Lu Liu & Alexander Melnikov - 2024 - Annals of Pure and Applied Logic 175 (1):103354.
    Download  
     
    Export citation  
     
    Bookmark  
  • Separation and weak könig's lemma.A. Humphreys & Stephen Simpson - 1999 - Journal of Symbolic Logic 64 (1):268-278.
    We continue the work of [14, 3, 1, 19, 16, 4, 12, 11, 20] investigating the strength of set existence axioms needed for separable Banach space theory. We show that the separation theorem for open convex sets is equivalent to WKL 0 over RCA 0 . We show that the separation theorem for separably closed convex sets is equivalent to ACA 0 over RCA 0 . Our strategy for proving these geometrical Hahn-Banach theorems is to reduce to the finite-dimensional case (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (2 other versions)2000 Annual Meeting of the Association for Symbolic Logic.A. Pillay, D. Hallett, G. Hjorth, C. Jockusch, A. Kanamori, H. J. Keisler & V. McGee - 2000 - Bulletin of Symbolic Logic 6 (3):361-396.
    Download  
     
    Export citation  
     
    Bookmark  
  • Two kinds of fixed point theorems and reverse mathematics.Weiguang Peng & Takeshi Yamazaki - 2017 - Mathematical Logic Quarterly 63 (5):454-461.
    In this paper, we investigate the logical strength of two types of fixed point theorems in the context of reverse mathematics. One is concerned with extensions of the Banach contraction principle. Among theorems in this type, we mainly show that the Caristi fixed point theorem is equivalent to math formula over math formula. The other is dedicated to topological fixed point theorems such as the Brouwer fixed point theorem. We introduce some variants of the Fan-Browder fixed point theorem and the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Reverse mathematics and order theoretic fixed point theorems.Takashi Sato & Takeshi Yamazaki - 2017 - Archive for Mathematical Logic 56 (3-4):385-396.
    The theory of countable partially ordered sets is developed within a weak subsystem of second order arithmetic. We within RCA0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {RCA_0}$$\end{document} give definitions of notions of the countable order theory and present some statements of countable lattices equivalent to arithmetical comprehension axiom over RCA0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {RCA_0}$$\end{document}. Then we within RCA0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {RCA_0}$$\end{document} give proofs of Knaster–Tarski (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations