Switch to: References

Citations of:

Degrees of models

Journal of Symbolic Logic 25 (3):233-237 (1960)

Add citations

You must login to add citations.
  1. In Memoriam: Joseph R. Shoenfield 1927–2000.Carl G. Jockusch - 2001 - Bulletin of Symbolic Logic 7 (3):393-396.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Arithmetical Sets and Retracing Functions.C. E. M. Yates - 1967 - Mathematical Logic Quarterly 13 (13-14):193-204.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The prehistory of the subsystems of second-order arithmetic.Walter Dean & Sean Walsh - 2017 - Review of Symbolic Logic 10 (2):357-396.
    This paper presents a systematic study of the prehistory of the traditional subsystems of second-order arithmetic that feature prominently in the reverse mathematics program of Friedman and Simpson. We look in particular at: (i) the long arc from Poincar\'e to Feferman as concerns arithmetic definability and provability, (ii) the interplay between finitism and the formalization of analysis in the lecture notes and publications of Hilbert and Bernays, (iii) the uncertainty as to the constructive status of principles equivalent to Weak K\"onig's (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Connected components of graphs and reverse mathematics.Jeffry L. Hirst - 1992 - Archive for Mathematical Logic 31 (3):183-192.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A survey of Mučnik and Medvedev degrees.Peter G. Hinman - 2012 - Bulletin of Symbolic Logic 18 (2):161-229.
    We survey the theory of Mucnik and Medvedev degrees of subsets of $^{\omega}{\omega}$with particular attention to the degrees of $\Pi_{1}^{0}$ subsets of $^{\omega}2$. Sections 1-6 present the major definitions and results in a uniform notation. Sections 7-6 present proofs, some more complete than others, of the major results of the subject together with much of the required background material.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Antibasis theorems for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Pi^0_1}$$\end{document} classes and the jump hierarchy. [REVIEW]Ahmet Çevik - 2013 - Archive for Mathematical Logic 52 (1-2):137-142.
    We prove two antibasis theorems for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Pi^0_1}$$\end{document} classes. The first is a jump inversion theorem for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Pi^0_1}$$\end{document} classes with respect to the global structure of the Turing degrees. For any \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${P\subseteq 2^\omega}$$\end{document}, define S(P), the degree spectrum of P, to be the set of all Turing degrees a such that there exists \documentclass[12pt]{minimal} \usepackage{amsmath} (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Choice classes.Ahmet Çevik - 2016 - Mathematical Logic Quarterly 62 (6):563-574.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Π 1 0 Classes, Peano Arithmetic, Randomness, and Computable Domination.David E. Diamondstone, Damir D. Dzhafarov & Robert I. Soare - 2010 - Notre Dame Journal of Formal Logic 51 (1):127-159.
    We present an overview of the topics in the title and of some of the key results pertaining to them. These have historically been topics of interest in computability theory and continue to be a rich source of problems and ideas. In particular, we draw attention to the links and connections between these topics and explore their significance to modern research in the field.
    Download  
     
    Export citation  
     
    Bookmark   5 citations