Switch to: References

Add citations

You must login to add citations.
  1. Set-theoretic blockchains.Miha E. Habič, Joel David Hamkins, Lukas Daniel Klausner, Jonathan Verner & Kameryn J. Williams - 2019 - Archive for Mathematical Logic 58 (7-8):965-997.
    Given a countable model of set theory, we study the structure of its generic multiverse, the collection of its forcing extensions and ground models, ordered by inclusion. Mostowski showed that any finite poset embeds into the generic multiverse while preserving the nonexistence of upper bounds. We obtain several improvements of his result, using what we call the blockchain construction to build generic objects with varying degrees of mutual genericity. The method accommodates certain infinite posets, and we can realize these embeddings (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Coding true arithmetic in the Medvedev degrees of classes.Paul Shafer - 2012 - Annals of Pure and Applied Logic 163 (3):321-337.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Direct and local definitions of the Turing jump.Richard A. Shore - 2007 - Journal of Mathematical Logic 7 (2):229-262.
    We show that there are Π5 formulas in the language of the Turing degrees, [Formula: see text], with ≤, ∨ and ∧, that define the relations x″ ≤ y″, x″ = y″ and so {x ∈ L2 = x ≥ y|x″ = y″} in any jump ideal containing 0. There are also Σ6&Π6 and Π8 formulas that define the relations w = x″ and w = x', respectively, in any such ideal [Formula: see text]. In the language with just ≤ (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The n-r.E. Degrees: Undecidability and σ1 substructures.Mingzhong Cai, Richard A. Shore & Theodore A. Slaman - 2012 - Journal of Mathematical Logic 12 (1):1250005-.
    We study the global properties of [Formula: see text], the Turing degrees of the n-r.e. sets. In Theorem 1.5, we show that the first order of [Formula: see text] is not decidable. In Theorem 1.6, we show that for any two n and m with n < m, [Formula: see text] is not a Σ1-substructure of [Formula: see text].
    Download  
     
    Export citation  
     
    Bookmark   2 citations