Switch to: References

Add citations

You must login to add citations.
  1. Representation of interlaced trilattices.Umberto Rivieccio - 2013 - Journal of Applied Logic 11 (2):174-189.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Shifting Priorities: Simple Representations for Twenty-seven Iterated Theory Change Operators.Hans Rott - 2009 - In Jacek Malinowski David Makinson & Wansing Heinrich (eds.), Towards Mathematical Philosophy. Springer. pp. 269–296.
    Prioritized bases, i.e., weakly ordered sets of sentences, have been used for specifying an agent’s ‘basic’ or ‘explicit’ beliefs, or alternatively for compactly encoding an agent’s belief state without the claim that the elements of a base are in any sense basic. This paper focuses on the second interpretation and shows how a shifting of priorities in prioritized bases can be used for a simple, constructive and intuitive way of representing a large variety of methods for the change of belief (...)
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • Jaina Logic: A Contemporary Perspective.Graham Priest - 2008 - History and Philosophy of Logic 29 (3):263-278.
    Jaina philosophy provides a very distinctive account of logic, based on the theory of ?sevenfold predication?. This paper provides a modern formalisation of the logic, using the techniques of many-valued and modal logic. The formalisation is applied, in turn, to some of the more problematic aspects of Jaina philosophy, especially its relativism.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • On Axiomatizing Shramko-Wansing’s Logic.Sergei P. Odintsov - 2009 - Studia Logica 91 (3):407-428.
    This work treats the problem of axiomatizing the truth and falsity consequence relations, ⊨ t and ⊨ f, determined via truth and falsity orderings on the trilattice SIXTEEN 3 (Shramko and Wansing, 2005). The approach is based on a representation of SIXTEEN 3 as a twist-structure over the two-element Boolean algebra.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Suszko’s Thesis, Inferential Many-valuedness, and the Notion of a Logical System.Heinrich Wansing & Yaroslav Shramko - 2008 - Studia Logica 88 (3):405-429.
    According to Suszko’s Thesis, there are but two logical values, true and false. In this paper, R. Suszko’s, G. Malinowski’s, and M. Tsuji’s analyses of logical twovaluedness are critically discussed. Another analysis is presented, which favors a notion of a logical system as encompassing possibly more than one consequence relation. [A] fundamental problem concerning many-valuedness is to know what it really is. [13, p. 281].
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Completeness and cut-elimination theorems for trilattice logics.Norihiro Kamide & Heinrich Wansing - 2011 - Annals of Pure and Applied Logic 162 (10):816-835.
    A sequent calculus for Odintsov’s Hilbert-style axiomatization of a logic related to the trilattice SIXTEEN3 of generalized truth values is introduced. The completeness theorem w.r.t. a simple semantics for is proved using Maehara’s decomposition method that simultaneously derives the cut-elimination theorem for . A first-order extension of and its semantics are also introduced. The completeness and cut-elimination theorems for are proved using Schütte’s method.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A Non-Inferentialist, Anti-Realistic Conception of Logical Truth and Falsity.Heinrich Wansing - 2012 - Topoi 31 (1):93-100.
    Anti-realistic conceptions of truth and falsity are usually epistemic or inferentialist. Truth is regarded as knowability, or provability, or warranted assertability, and the falsity of a statement or formula is identified with the truth of its negation. In this paper, a non-inferentialist but nevertheless anti-realistic conception of logical truth and falsity is developed. According to this conception, a formula (or a declarative sentence) A is logically true if and only if no matter what is told about what is told about (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Truth values.Yaroslav Shramko - 2010 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Sequent calculi for some trilattice logics.Norihiro Kamide & Heinrich Wansing - 2009 - Review of Symbolic Logic 2 (2):374-395.
    The trilattice SIXTEEN3 introduced in Shramko & Wansing (2005) is a natural generalization of the famous bilattice FOUR2. Some Hilbert-style proof systems for trilattice logics related to SIXTEEN3 have recently been studied (Odintsov, 2009; Shramko & Wansing, 2005). In this paper, three sequent calculi GB, FB, and QB are presented for Odintsovs coordinate valuations associated with valuations in SIXTEEN3. The equivalence between GB, FB, and QB, the cut-elimination theorems for these calculi, and the decidability of B are proved. In addition, (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Truth and Falsehood: An Inquiry Into Generalized Logical Values.Yaroslav Shramko & Heinrich Wansing - 2011 - Dordrecht, Netherland: Springer.
    The book presents a thoroughly elaborated logical theory of generalized truth-values understood as subsets of some established set of truth values. After elucidating the importance of the very notion of a truth value in logic and philosophy, we examine some possible ways of generalizing this notion. The useful four-valued logic of first-degree entailment by Nuel Belnap and the notion of a bilattice constitute the basis for further generalizations. By doing so we elaborate the idea of a multilattice, and most notably, (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Conservative translations of four-valued logics in modal logic.Ekaterina Kubyshkina - 2019 - Synthese 198 (S22):5555-5571.
    Following a proposal by Kooi and Tamminga, we introduce a conservative translation manual for every four-valued truth-functional propositional logic into a modal logic. However, the application of this translation does not preserve the intuitive reading of the truth-values for every four-valued logic. In order to solve this problem, we modify the translation manual and prove its conservativity by exploiting the method of generalized truth-values.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Valuations: Bi, Tri, and Tetra.Rohan French & David Ripley - 2019 - Studia Logica 107 (6):1313-1346.
    This paper considers some issues to do with valuational presentations of consequence relations, and the Galois connections between spaces of valuations and spaces of consequence relations. Some of what we present is known, and some even well-known; but much is new. The aim is a systematic overview of a range of results applicable to nonreflexive and nontransitive logics, as well as more familiar logics. We conclude by considering some connectives suggested by this approach.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • A Few More Useful 8-valued Logics for Reasoning with Tetralattice EIGHT 4.Dmitry Zaitsev - 2009 - Studia Logica 92 (2):265-280.
    In their useful logic for a computer network Shramko and Wansing generalize initial values of Belnap’s 4-valued logic to the set 16 to be the power-set of Belnap’s 4. This generalization results in a very specific algebraic structure — the trilattice SIXTEEN3 with three orderings: information, truth and falsity. In this paper, a slightly different way of generalization is presented. As a base for further generalization a set 3 is chosen, where initial values are a — incoming data is asserted, (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Relevant generalization starts here (and here = 2).Dmitry Zaitsev & Oleg Grigoriev - 2010 - Logic and Logical Philosophy 19 (4):329-340.
    There is a productive and suggestive approach in philosophical logic based on the idea of generalized truth values. This idea, which stems essentially from the pioneering works by J.M. Dunn, N. Belnap, and which has recently been developed further by Y. Shramko and H. Wansing, is closely connected to the power-setting formation on the base of some initial truth values. Having a set of generalized truth values, one can introduce fundamental logical notions, more specifically, the ones of logical operations and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Bi-facial Truth: a Case for Generalized Truth Values.Dmitry Zaitsev & Yaroslav Shramko - 2013 - Studia Logica 101 (6):1299-1318.
    We explore a possibility of generalization of classical truth values by distinguishing between their ontological and epistemic aspects and combining these aspects within a joint semantical framework. The outcome is four generalized classical truth values implemented by Cartesian product of two sets of classical truth values, where each generalized value comprises both ontological and epistemic components. This allows one to define two unary twin connectives that can be called “semi-classical negations”. Each of these negations deals only with one of the (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • A few more useful 8-valued logics for reasoning with tetralattice eight.Dmitry Zaitsev - 2009 - Studia Logica 92 (2):265 - 280.
    In their useful logic for a computer network Shramko and Wansing generalize initial values of Belnap’s 4-valued logic to the set 16 to be the power-set of Belnap’s 4. This generalization results in a very specific algebraic structure — the trilattice SIXTEEN 3 with three orderings: information, truth and falsity. In this paper, a slightly different way of generalization is presented. As a base for further generalization a set 3 is chosen, where initial values are a — incoming data is (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • The Power of Belnap: Sequent Systems for SIXTEEN ₃. [REVIEW]Heinrich Wansing - 2010 - Journal of Philosophical Logic 39 (4):369 - 393.
    The trilattice SIXTEEN₃ is a natural generalization of the wellknown bilattice FOUR₂. Cut-free, sound and complete sequent calculi for truth entailment and falsity entailment in SIXTEEN₃, are presented.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • A Note on FDE “All the Way Up”.Jc Beall & Caleb Camrud - 2020 - Notre Dame Journal of Formal Logic 61 (2):283-296.
    A very natural and philosophically important subclassical logic is FDE. This account of logical consequence can be seen as going beyond the standard two-valued account to a four-valued account. A natural question arises: What account of logical consequence arises from considering further combinations of such values? A partial answer was given by Priest in 2014; Shramko and Wansing had also given a partial result some years earlier, although in a different context. In this note we generalize Priest’s result to show (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Logic of Generalized Truth Values and the Logic of Bilattices.Sergei P. Odintsov & Heinrich Wansing - 2015 - Studia Logica 103 (1):91-112.
    This paper sheds light on the relationship between the logic of generalized truth values and the logic of bilattices. It suggests a definite solution to the problem of axiomatizing the truth and falsity consequence relations, \ and \ , considered in a language without implication and determined via the truth and falsity orderings on the trilattice SIXTEEN 3 . The solution is based on the fact that a certain algebra isomorphic to SIXTEEN 3 generates the variety of commutative and distributive (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Notes on Craig interpolation for LJ with strong negation.Norihiro Kamide - 2011 - Mathematical Logic Quarterly 57 (4):395-399.
    The Craig interpolation theorem is shown for an extended LJ with strong negation. A new simple proof of this theorem is obtained. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A Hierarchy of Weak Double Negations.Norihiro Kamide - 2013 - Studia Logica 101 (6):1277-1297.
    In this paper, a way of constructing many-valued paraconsistent logics with weak double negation axioms is proposed. A hierarchy of weak double negation axioms is addressed in this way. The many-valued paraconsistent logics constructed are defined as Gentzen-type sequent calculi. The completeness and cut-elimination theorems for these logics are proved in a uniform way. The logics constructed are also shown to be decidable.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Proof Systems Combining Classical and Paraconsistent Negations.Norihiro Kamide - 2009 - Studia Logica 91 (2):217-238.
    New propositional and first-order paraconsistent logics (called L ω and FL ω , respectively) are introduced as Gentzen-type sequent calculi with classical and paraconsistent negations. The embedding theorems of L ω and FL ω into propositional (first-order, respectively) classical logic are shown, and the completeness theorems with respect to simple semantics for L ω and FL ω are proved. The cut-elimination theorems for L ω and FL ω are shown using both syntactical ways via the embedding theorems and semantical ways (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Editorial Introduction. Truth Values: Part I. [REVIEW]Yaroslav Shramko & Heinrich Wansing - 2009 - Studia Logica 91 (3):295-304.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Generalized truth values.: A reply to Dubois.Heinrich Wansing & Nuel Belnap - 2010 - Logic Journal of the IGPL 18 (6):921-935.
    Download  
     
    Export citation  
     
    Bookmark   11 citations