Switch to: References

Add citations

You must login to add citations.
  1. Pasch's empiricism as methodological structuralism.Dirk Schlimm - 2020 - In Erich H. Reck & Georg Schiemer (eds.), The Pre-History of Mathematical Structuralism. Oxford: Oxford University Press. pp. 80-105.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • What are Implicit Definitions?Eduardo N. Giovannini & Georg Schiemer - 2019 - Erkenntnis 86 (6):1661-1691.
    The paper surveys different notions of implicit definition. In particular, we offer an examination of a kind of definition commonly used in formal axiomatics, which in general terms is understood as providing a definition of the primitive terminology of an axiomatic theory. We argue that such “structural definitions” can be semantically understood in two different ways, namely as specifications of the meaning of the primitive terms of a theory and as definitions of higher-order mathematical concepts or structures. We analyze these (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Dedekind's Logicism.Ansten Mørch Klev - 2015 - Philosophia Mathematica:nkv027.
    A detailed argument is provided for the thesis that Dedekind was a logicist about arithmetic. The rules of inference employed in Dedekind's construction of arithmetic are, by his lights, all purely logical in character, and the definitions are all explicit; even the definition of the natural numbers as the abstract type of simply infinite systems can be seen to be explicit. The primitive concepts of the construction are logical in their being intrinsically tied to the functioning of the understanding.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Dedekind’s Map-theoretic Period.José Ferreirós - 2017 - Philosophia Mathematica 25 (3):318–340.
    In 1887–1894, Richard Dedekind explored a number of ideas within the project of placing mappings at the very center of pure mathematics. We review two such initiatives: the introduction in 1894 of groups into Galois theory intrinsically via field automorphisms, and a new attempt to define the continuum via maps from ℕ to ℕ in 1891. These represented the culmination of Dedekind’s efforts to reconceive pure mathematics within a theory of sets and maps and throw new light onto the nature (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Peano’s structuralism and the birth of formal languages.Joan Bertran-San-Millán - 2022 - Synthese 200 (4):1-34.
    Recent historical studies have investigated the first proponents of methodological structuralism in late nineteenth-century mathematics. In this paper, I shall attempt to answer the question of whether Peano can be counted amongst the early structuralists. I shall focus on Peano’s understanding of the primitive notions and axioms of geometry and arithmetic. First, I shall argue that the undefinability of the primitive notions of geometry and arithmetic led Peano to the study of the relational features of the systems of objects that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Dedekind's Logicism†.Ansten Mørch Klev - 2015 - Philosophia Mathematica 25 (3):341-368.
    A detailed argument is provided for the thesis that Dedekind was a logicist about arithmetic. The rules of inference employed in Dedekind's construction of arithmetic are, by his lights, all purely logical in character, and the definitions are all explicit; even the definition of the natural numbers as the abstract type of simply infinite systems can be seen to be explicit. The primitive concepts of the construction are logical in their being intrinsically tied to the functioning of the understanding.
    Download  
     
    Export citation  
     
    Bookmark   3 citations