Switch to: References

Add citations

You must login to add citations.
  1. Pluralism in Mathematics: A New Position in Philosophy of Mathematics.Michèle Friend - 2013 - Dordrecht, Netherland: Springer.
    The pluralist sheds the more traditional ideas of truth and ontology. This is dangerous, because it threatens instability of the theory. To lend stability to his philosophy, the pluralist trades truth and ontology for rigour and other ‘fixtures’. Fixtures are the steady goal posts. They are the parts of a theory that stay fixed across a pair of theories, and allow us to make translations and comparisons. They can ultimately be moved, but we tend to keep them fixed temporarily. Apart (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Philosophy of mathematical practice: A primer for mathematics educators.Yacin Hamami & Rebecca Morris - 2020 - ZDM Mathematics Education 52:1113–1126.
    In recent years, philosophical work directly concerned with the practice of mathematics has intensified, giving rise to a movement known as the philosophy of mathematical practice . In this paper we offer a survey of this movement aimed at mathematics educators. We first describe the core questions philosophers of mathematical practice investigate as well as the philosophical methods they use to tackle them. We then provide a selective overview of work in the philosophy of mathematical practice covering topics including the (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Natural Formalization: Deriving the Cantor-Bernstein Theorem in Zf.Wilfried Sieg & Patrick Walsh - 2021 - Review of Symbolic Logic 14 (1):250-284.
    Natural Formalization proposes a concrete way of expanding proof theory from the meta-mathematical investigation of formal theories to an examination of “the concept of the specifically mathematical proof.” Formal proofs play a role for this examination in as much as they reflect the essential structure and systematic construction of mathematical proofs. We emphasize three crucial features of our formal inference mechanism: (1) the underlying logical calculus is built for reasoning with gaps and for providing strategic directions, (2) the mathematical frame (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Gödel’s Philosophical Challenge.Wilfried Sieg - 2020 - Studia Semiotyczne 34 (1):57-80.
    The incompleteness theorems constitute the mathematical core of Gödel’s philosophical challenge. They are given in their “most satisfactory form”, as Gödel saw it, when the formality of theories to which they apply is characterized via Turing machines. These machines codify human mechanical procedures that can be carried out without appealing to higher cognitive capacities. The question naturally arises, whether the theorems justify the claim that the human mind has mathematical abilities that are not shared by any machine. Turing admits that (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Automated natural deduction in thinker.Francis Jeffry Pelletier - 1998 - Studia Logica 60 (1):3-43.
    Although resolution-based inference is perhaps the industry standard in automated theorem proving, there have always been systems that employed a different format. For example, the Logic Theorist of 1957 produced proofs by using an axiomatic system, and the proofs it generated would be considered legitimate axiomatic proofs; Wang’s systems of the late 1950’s employed a Gentzen-sequent proof strategy; Beth’s systems written about the same time employed his semantic tableaux method; and Prawitz’s systems of again about the same time are often (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • An Analysis of the Notion of Rigour in Proofs.Michele Friend & Andrea Pedeferri - 2011 - Logic and Philosophy of Science 9 (1):165-171.
    We are told that there are standards of rigour in proof, and we are told that the standards have increased over the centuries. This is fairly clear. But rigour has also changed its nature. In this paper we as-sess where these changes leave us today.1 To motivate making the new assessment, we give two illustra-tions of changes in our conception of rigour. One, concerns the shift from geometry to arithmetic as setting the standard for rig-our. The other, concerns the notion (...)
    Download  
     
    Export citation  
     
    Bookmark