Switch to: References

Add citations

You must login to add citations.
  1. The tree property and the failure of SCH at uncountable cofinality.Dima Sinapova - 2012 - Archive for Mathematical Logic 51 (5-6):553-562.
    Given a regular cardinal λ and λ many supercompact cardinals, we describe a type of forcing such that in the generic extension there is a cardinal κ with cofinality λ, the Singular Cardinal Hypothesis at κ fails, and the tree property holds at κ+.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The tree property at the successor of a singular limit of measurable cardinals.Mohammad Golshani - 2018 - Archive for Mathematical Logic 57 (1-2):3-25.
    Assume \ is a singular limit of \ supercompact cardinals, where \ is a limit ordinal. We present two methods for arranging the tree property to hold at \ while making \ the successor of the limit of the first \ measurable cardinals. The first method is then used to get, from the same assumptions, the tree property at \ with the failure of SCH at \. This extends results of Neeman and Sinapova. The second method is also used to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Diagonal supercompact Radin forcing.Omer Ben-Neria, Chris Lambie-Hanson & Spencer Unger - 2020 - Annals of Pure and Applied Logic 171 (10):102828.
    Motivated by the goal of constructing a model in which there are no κ-Aronszajn trees for any regular $k>\aleph_1$, we produce a model with many singular cardinals where both the singular cardinals hypothesis and weak square fail.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Aronszajn trees and failure of the singular cardinal hypothesis.Itay Neeman - 2009 - Journal of Mathematical Logic 9 (1):139-157.
    The tree property at κ+ states that there are no Aronszajn trees on κ+, or, equivalently, that every κ+ tree has a cofinal branch. For singular strong limit cardinals κ, there is tension between the tree property at κ+ and failure of the singular cardinal hypothesis at κ; the former is typically the result of the presence of strongly compact cardinals in the background, and the latter is impossible above strongly compacts. In this paper, we reconcile the two. We prove (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Another method for constructing models of not approachability and not SCH.Moti Gitik - 2021 - Archive for Mathematical Logic 60 (3):469-475.
    We present a new method of constructing a model of \SCH+\AP.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Stationary Reflection and the Failure of the Sch.Omer Ben-Neria, Yair Hayut & Spencer Unger - 2024 - Journal of Symbolic Logic 89 (1):1-26.
    In this paper we prove that from large cardinals it is consistent that there is a singular strong limit cardinal $\nu $ such that the singular cardinal hypothesis fails at $\nu $ and every collection of fewer than $\operatorname {\mathrm {cf}}(\nu )$ stationary subsets of $\nu ^{+}$ reflects simultaneously. For $\operatorname {\mathrm {cf}}(\nu )> \omega $, this situation was not previously known to be consistent. Using different methods, we reduce the upper bound on the consistency strength of this situation for (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Diagonal Prikry extensions.James Cummings & Matthew Foreman - 2010 - Journal of Symbolic Logic 75 (4):1383-1402.
    Download  
     
    Export citation  
     
    Bookmark   12 citations