Switch to: References

Add citations

You must login to add citations.
  1. Aronszajn trees and the successors of a singular cardinal.Spencer Unger - 2013 - Archive for Mathematical Logic 52 (5-6):483-496.
    From large cardinals we obtain the consistency of the existence of a singular cardinal κ of cofinality ω at which the Singular Cardinals Hypothesis fails, there is a bad scale at κ and κ ++ has the tree property. In particular this model has no special κ +-trees.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • A remark on the tree property in a choiceless context.Arthur W. Apter - 2011 - Archive for Mathematical Logic 50 (5-6):585-590.
    We show that the consistency of the theory “ZF + DC + Every successor cardinal is regular + Every limit cardinal is singular + Every successor cardinal satisfies the tree property” follows from the consistency of a proper class of supercompact cardinals. This extends earlier results due to the author showing that the consistency of the theory “\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm ZF} + \neg{\rm AC}_\omega}$$\end{document} + Every successor cardinal is regular + Every limit cardinal (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation