Switch to: Citations

Add references

You must login to add references.
  1. (2 other versions)Set Theory.Thomas Jech - 1999 - Studia Logica 63 (2):300-300.
    Download  
     
    Export citation  
     
    Bookmark   330 citations  
  • The tree property at successors of singular cardinals.Menachem Magidor & Saharon Shelah - 1996 - Archive for Mathematical Logic 35 (5-6):385-404.
    Assuming some large cardinals, a model of ZFC is obtained in which $\aleph_{\omega+1}$ carries no Aronszajn trees. It is also shown that if $\lambda$ is a singular limit of strongly compact cardinals, then $\lambda^+$ carries no Aronszajn trees.
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • (2 other versions)Squares, scales and stationary reflection.James Cummings, Matthew Foreman & Menachem Magidor - 2001 - Journal of Mathematical Logic 1 (01):35-98.
    Since the work of Gödel and Cohen, which showed that Hilbert's First Problem was independent of the usual assumptions of mathematics, there have been a myriad of independence results in many areas of mathematics. These results have led to the systematic study of several combinatorial principles that have proven effective at settling many of the important independent statements. Among the most prominent of these are the principles diamond and square discovered by Jensen. Simultaneously, attempts have been made to find suitable (...)
    Download  
     
    Export citation  
     
    Bookmark   105 citations  
  • (2 other versions)Scales, squares and reflection.James Cummings, Matthew Foreman & Menachem Magidor - 2001 - Journal of Mathematical Logic 1 (1):35-98.
    Since the work of Gödel and Cohen, which showed that Hilbert's First Problem was independent of the usual assumptions of mathematics, there have been a myriad of independence results in many areas of mathematics. These results have led to the systematic study of several combinatorial principles that have proven effective at settling many of the important independent statements. Among the most prominent of these are the principles diamond and square discovered by Jensen. Simultaneously, attempts have been made to find suitable (...)
    Download  
     
    Export citation  
     
    Bookmark   67 citations  
  • Canonical structure in the universe of set theory: Part two.James Cummings, Matthew Foreman & Menachem Magidor - 2006 - Annals of Pure and Applied Logic 142 (1):55-75.
    We prove a number of consistency results complementary to the ZFC results from our paper [J. Cummings, M. Foreman, M. Magidor, Canonical structure in the universe of set theory: part one, Annals of Pure and Applied Logic 129 211–243]. We produce examples of non-tightly stationary mutually stationary sequences, sequences of cardinals on which every sequence of sets is mutually stationary, and mutually stationary sequences not concentrating on a fixed cofinality. We also give an alternative proof for the consistency of the (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Canonical structure in the universe of set theory: part one.James Cummings, Matthew Foreman & Menachem Magidor - 2004 - Annals of Pure and Applied Logic 129 (1-3):211-243.
    We start by studying the relationship between two invariants isolated by Shelah, the sets of good and approachable points. As part of our study of these invariants, we prove a form of “singular cardinal compactness” for Jensen's square principle. We then study the relationship between internally approachable and tight structures, which parallels to a certain extent the relationship between good and approachable points. In particular we characterise the tight structures in terms of PCF theory and use our characterisation to prove (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Aronszajn trees and failure of the singular cardinal hypothesis.Itay Neeman - 2009 - Journal of Mathematical Logic 9 (1):139-157.
    The tree property at κ+ states that there are no Aronszajn trees on κ+, or, equivalently, that every κ+ tree has a cofinal branch. For singular strong limit cardinals κ, there is tension between the tree property at κ+ and failure of the singular cardinal hypothesis at κ; the former is typically the result of the presence of strongly compact cardinals in the background, and the latter is impossible above strongly compacts. In this paper, we reconcile the two. We prove (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations