Switch to: References

Add citations

You must login to add citations.
  1. Hilberts Logik. Von der Axiomatik zur Beweistheorie.Volker Peckhaus - 1995 - NTM Zeitschrift für Geschichte der Wissenschaften, Technik und Medizin 3 (1):65-86.
    This paper gives a survey of David Hilbert's (1862–1943) changing attitudes towards logic. The logical theory of the Göttingen mathematician is presented as intimately linked to his studies on the foundation of mathematics. Hilbert developed his logical theory in three stages: (1) in his early axiomatic programme until 1903 Hilbert proposed to use the traditional theory of logical inferences to prove the consistency of his set of axioms for arithmetic. (2) After the publication of the logical and set-theoretical paradoxes by (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Fermat’s last theorem proved in Hilbert arithmetic. I. From the proof by induction to the viewpoint of Hilbert arithmetic.Vasil Penchev - 2021 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 13 (7):1-57.
    In a previous paper, an elementary and thoroughly arithmetical proof of Fermat’s last theorem by induction has been demonstrated if the case for “n = 3” is granted as proved only arithmetically (which is a fact a long time ago), furthermore in a way accessible to Fermat himself though without being absolutely and precisely correct. The present paper elucidates the contemporary mathematical background, from which an inductive proof of FLT can be inferred since its proof for the case for “n (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Grounding, Quantifiers, and Paradoxes.Francesco A. Genco, Francesca Poggiolesi & Lorenzo Rossi - 2021 - Journal of Philosophical Logic 50 (6):1417-1448.
    The notion of grounding is usually conceived as an objective and explanatory relation. It connects two relata if one—the ground—determines or explains the other—the consequence. In the contemporary literature on grounding, much effort has been devoted to logically characterize the formal aspects of grounding, but a major hard problem remains: defining suitable grounding principles for universal and existential formulae. Indeed, several grounding principles for quantified formulae have been proposed, but all of them are exposed to paradoxes in some very natural (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • De-mystieylng situations.B. H. Slater - 1997 - Philosophical Papers 26 (2):165-178.
    Download  
     
    Export citation  
     
    Bookmark  
  • The epsilon calculus' problematic.B. H. Slater - 1994 - Philosophical Papers 23 (3):217-242.
    Download  
     
    Export citation  
     
    Bookmark   4 citations